I have two matrices in MATLAB. Each one is filled with 1 and 0 at different positions. I want to compare each element:
If there is a 1 match, I want it to record as True Positive.
If there is a 0 match, I want it to record as True Negative.
If one says 1 and the other says 0, I want to record as False Positive.
If one says 0 and the other says 1, I want to record as False Negative.
I tried just comparing the two matrices:
idx = A == B
But, that gives me a simple match, not telling me when there is a True Positive or Negative, etc.
Is there any specific function I could use, or any alternative?
You could just add the matrices in a prescribed way....
a = [1 0 1 0
1 1 0 0
0 0 1 1];
b = [1 0 0 0
0 0 0 1
0 0 1 0];
C = a + 2*b;
% For pairs [a,b] we expect
% [0,0]: C = 0, true negative
% [1,0]: C = 1, false positive
% [0,1]: C = 2, false negative
% [1,1]: C = 3, true positive
% C =
% [ 3 0 1 0
% 1 1 0 2
% 0 0 3 1 ]
If you have the Statistics and Machine Learning toolbox and you only want a summary, you might just need the function confusionmat.
From the docs:
C = confusionmat(group,grouphat) returns the confusion matrix C determined by the known and predicted groups in group and grouphat. [...]. C is a square matrix with size equal to the total number of distinct elements in group and grouphat. C(i,j) is a count of observations known to be in group i but predicted to be in group j.
For example:
a = [1 0 1 0
1 1 0 0
0 0 1 1];
b = [1 0 0 0
0 0 0 1
0 0 1 0];
C = confusionmat( a(:), b(:) );
% C =
% [ 5 1
% 4 2]
% So for each pair [a,b], we have 5*[0,0], 2*[1,1], 4*[1,0], 1*[0,1]
A similar function for those with the Neural Network Toolbox instead would be confusion.
You could just use bitwise operators to produce the four different values:
bitor(bitshift(uint8(b),1),uint8(a))
Produces an array with
0 : True Negative
1 : False Negative (a is true but b is false)
2 : False Positive (a is false but b is true)
3 : True Positive
One naive approach would be four comparisons, case by case:
% Set up some artificial data
ground_truth = randi(2, 5) - 1
compare = randi(2, 5) - 1
% Determine true positives, false positives, etc.
tp = ground_truth & compare
fp = ~ground_truth & compare
tn = ~ground_truth & ~compare
fn = ground_truth & ~compare
Output:
ground_truth =
1 0 1 0 0
0 1 1 0 1
1 1 0 1 0
0 1 0 1 1
0 0 0 1 0
compare =
0 1 1 0 1
0 1 1 1 0
1 1 0 0 1
1 1 1 0 0
1 1 1 1 1
tp =
0 0 1 0 0
0 1 1 0 0
1 1 0 0 0
0 1 0 0 0
0 0 0 1 0
fp =
0 1 0 0 1
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0
1 1 1 0 1
tn =
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
fn =
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
That works, because 0 and 1 (or any positive value) are alternative representations for true and false.
To keep your main code clean, set up a separate function, say my_stats.m
function [tp, fp, tn, fn] = my_stats(ground_truth, compare)
% Determine true positives, false positives, etc.
tp = ground_truth & compare;
fp = ~ground_truth & compare;
tn = ~ground_truth & ~compare;
fn = ground_truth & ~compare;
end
and call it in your main code:
% Set up some artificial data
ground_truth = randi(2, 5) - 1
compare = randi(2, 5) - 1
[tp, fp, tn, fn] = my_stats(ground_truth, compare)
Hope that helps!
I found that I can use the find method and set two conditions, then just find the numbers of the element in each variable
TruePositive = length(find(A==B & A==1))
TrueNegative = length(find(A==B & A==0))
FalsePositive = length(find(A~=B & A==1))
FalseNegative = length(find(A~=B & A==0))
The confusionmatrix() method suggested by #Wolfie is also really neat, especially if you use the confusionchart() which provides a nice visualisation.
Related
Let us we have binary number to fill out 9 spots with specific condition: 0 always comes before 1. the possible conditions is 10:
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
Now lest us extent it to 0, 1, 2 with same rule. 0 should be always before 1 and/or 2. 1 should be before 1. Again, 9 spots are available to fill out.
I know that this yields to 55 combinations.
Question:
(1) what is the mathematical formulation to generalize this?
(2) How can I store all those 55 combinations? [any matlab code?]
Thanks
As the commenter said, the answer comes down to stars and bars. You can also think of this as counting the number of non-decreasing sequences i_1 <= i_2 <= ... <= i_k, where k is the number of symbols available and each i_j is a number between 0 and 9.
That said, here's a matlab script that generates all possibilities. Each row of the output matrix is one possible string of digits.
function M = bin_combs(L,k)
% L: length
% k: number of symbols
if k == 1
M = zeros(1,L);
else
M = zeros(0,L);
N = bin_combs(L,k-1);
for i = 1:size(N,1)
row = N(i,:);
for j=find(row==k-2)
new_row = row;
new_row(j:end) = new_row(j:end) + 1;
M = [M;new_row];
end
M = [M;row];
end
end
Some sample output:
>> size(bin_combs(9,3))
ans =
55 9
>> size(bin_combs(9,4))
ans =
220 9
I have a logical vector in which I would like to iterate over every n-elements. If in any given window at least 50% are 1's, then I change every element to 1, else I keep as is and move to the next window. For example.
n = 4;
input = [0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1];
output = func(input,4);
output = [0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1];
This function is trivial to implement but is it possible to apply a vectorized implementation using logical indexing?. I am trying to build up the intuition of applying this technique.
here's a one liner (that works for your input):
func = #(input,n) input | kron(sum(reshape(input ,n,[]))>=n/2,ones(1,n));
of course, there are cases to solve that this doesnt answer, what if the size of the input is not commensurate in n? etc...
i'm not sure if that's what you meant by vectorization, and I didnt benchmark it vs a for loop...
Here is one way of doing it. Once understood you can compact it in less lines but I'll details the intermediate steps for the sake of clarity.
%% The inputs
n = 4;
input = [0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1];
1) Split your input into blocks of size n (note that your final function will have to check that the number of elements in input is a integer multiple of n)
c = reshape(input,n,[]) ;
Gives you a matrix with your blocks organized in columns:
c =
0 0 0 0 0
0 1 0 1 0
0 1 0 0 0
1 0 1 1 1
2) Perform your test condition on each of the block. For this we'll take advantage that Matlab is working column wise for the sum function:
>> cr = sum(c) >= (n/2)
cr =
0 1 0 1 0
Now you have a logical vector cr containing as many elements as initial blocks. Each value is the result of the test condition over the block. The 0 blocks will be left unchanged, the 1 blocks will be forced to value 1.
3) Force 1 columns/block to value 1:
>> c(:,cr) = 1
c =
0 1 0 1 0
0 1 0 1 0
0 1 0 1 0
1 1 1 1 1
4) Now all is left is to unfold your matrix. You can do it several ways:
res = c(:) ; %% will give you a column vector
OR
>> res = reshape(c,1,[]) %% will give you a line vector
res =
0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1
I've been struggling with this for a bit now. I have a small matrix s for example and a bigger matrix B as shown below.
B =
0 0 0 0 0 0 1 1
1 1 0 0 1 0 1 1
1 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0
0 0 1 1 1 0 0 1
0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 0
0 1 1 0 1 1 0 0
s =
1 1
1 1
What I want to do is iterate through B with s and compare the values. If all the values in s equal the values in B (the small section of B), then the answer is 1, if not then 0.
The 1's and 0's would be placed in a matrix as well.
This is what I've done so far but unfortunately, it doesn't iterate step by step and doesn't create a matrix either.
s = ones(2,2)
B = randi([0 1],8,8)
f = zeros(size(B))
[M,N]=size(B); % the larger array
[m,n]=size(s); % and the smaller...
for i=1:M/m-(m-1)
for j=1:N/n-(n-1)
if all(s==B(i:i+m-1,j:j+n-1))
disp("1")
else
disp("0")
end
end
end
Any help would be appreciated!
The following code works on the examples you supplied, I haven't tested it on anything else, and it will not work if the dimensions of the smaller matrix are not factors of the dimensions of the larger matrix, but you didn't indicate that it needed to do that in your description.
B =[0 0 0 0 0 0 1 1
1 1 0 0 1 0 1 1
1 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0
0 0 1 1 1 0 0 1
0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 0
0 1 1 0 1 1 0 0];
S =[1 1
1 1];
%check if array meets size requirements
numRowB = size(B,1);
numRowS = size(S,1);
numColB = size(B,2);
numColS = size(S,2);
%get loop multiples
incRows = numRowB/numRowS;
incCols = numColB/numColS;
%create output array
result = zeros(incRows, incCols);
%create rows and colums indices
rowsPull = 1:numRowS:numRowB;
colsPull = 1:numColS:numColB;
%iterate
for i= 1:incRows
for j= 1:incCols
result(i,j) = isequal(B(rowsPull(i):rowsPull(i)+numRowS-1, colsPull(j):colsPull(j)+numColS-1),S);
end
end
%print the resulting array
disp(result)
I have the following two matrices which are outputs of a procedure. The size of the matrices may change but both matrices will always be the same size: size(TwoHopMat_1) == size(Final_matrix)
Example:
TwoHopMat_1 =
0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
1 0 0 0 0
Final_matrix =
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 0 0 0
1 0 0 0 1
Now I need to shuffle the final_matrix such that i meet the following conditions after shuffling:
Every column should have a minimum of one 1s
If i have a 1 in a particular position of TwoHopMat_1 then that particular position should not have 1 after shuffling.
The conditions should work even if we give matrices of size 100x100.
first step: set one element of each column of the result matrix ,that is not 1 in Final_matrix ,to 1
second step: then remaining ones randomly inserted into positions of the result matrix that are not 1 in Final_matrix and are not 1 in the first step result
TwoHopMat_1=[...
0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
1 0 0 0 0];
Final_matrix=[...
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 0 0 0
1 0 0 0 1];
[row col] = size(Final_matrix);
result = zeros(row ,col);
%condition 1 & 2 :
notTwoHop = ~TwoHopMat_1;
s= sum(notTwoHop,1);
c= [0 cumsum(s(1:end - 1))];
f= find(notTwoHop);
r = floor(rand(1, col) .* s) + 1;
i = c + r;
result(f(i)) = 1;
%insert remaining ones randomly into the result
f= find(~(result | TwoHopMat_1));
i = randperm(numel(f), sum(Final_matrix(:))-col);
result(f(i)) =1
A possible solution:
function [result_matrix] = shuffle_matrix(TwoHopMat_1, Final_matrix)
% Condition number 2
ones_mat = ones(size(TwoHopMat_1));
temp_mat = abs(TwoHopMat_1 - ones_mat);
% Condition number 1
ones_to_remove = abs(sum(sum(temp_mat)) - sum(sum(Final_matrix)));
while ones_to_remove > 0
% Random matrix entry
i = floor((size(Final_matrix, 1) * rand())) + 1;
j = floor((size(Final_matrix, 2) * rand())) + 1;
if temp_mat(i,j) == 1
temp_mat(i,j) = 0;
ones_to_remove = ones_to_remove - 1;
end
end
result_matrix = temp_mat;
end
Note: this solution uses brute force.
I have a column vector x made up of 4 elements, how can i generate all the possible combinations of the values that x can take such that x*x' is less than or equal to a certain value?
note that the values of x are positive and integers.
To be more clear:
the input is the number of elements of the column vector x and the threshold, the output are the different possible combinations of the values of x respecting the fact that x*x' <=threshold
Example: threshold is 4 and x is a 4*1 column vector.....the output is x=[0 0 0 0].[0 0 0 1],[1 1 1 1]......
See if this works for you -
threshold = 4;
A = 0:threshold
A1 = allcomb(A,A,A,A)
%// Or use: A1 = combvec(A,A,A,A).' from Neural Network Toolbox
combs = A1(sum(A1.^2,2)<=threshold,:)
Please note that the code listed above uses allcomb from MATLAB File-exchange.
Output -
combs =
0 0 0 0
0 0 0 1
0 0 0 2
0 0 1 0
0 0 1 1
0 0 2 0
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
0 2 0 0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
2 0 0 0