How do I prevent precision loss in table values? - matlab

I currently have the following code:
count = 20;
n = zeros(count, 1);
P = zeros(count, 1);
for i = 1:count
n(i) = i;
P(i) = sym(i)^i + (sym(1-i))^(i-1);
if i == (count)
T = table(n,P)
end
end
This gives me a table with a set of values. However, some of the values are losing precision because they have too many digits.
I am aware that MATLAB allows for up to 536870913 digits of precision. How do I make my table values not lose precision?
Note: if I were to just do the following operation (for example): sym(200)^2010, I would get the full precision value, which has 4626 digits. Doing this for table values doesn't seem to work, though, for some strange reason.
If someone could please help me with this I would be extremely grateful as I have been struggling with this for several hours now.

As #Daniel commented, the problem is that you are casting to double when storing it in P. MATLAB only has the precision you mention when using symbolic variables, but when you get into the numerical world, you can only store a finite amount of precision.
To be exact, once you define P as a double (zeros returns a double vector), the biggest integer you can store such that all of its smaller integers are precise is 2^53, way smaller than your P(20). This means that any integer bigger than 2^53 is not ensured to be precise on a double valued vector.
Your solution is thus to avoid casting, to store the variable on a sym type P. Note that the above also applies to later maths. If you plan to use this variable in some equation, remember that when you pass it to numerical form, you will lose precision. Often this does not matter, as the precision lost is very small, but you should know it.
If you want to learn more about how numerical precision work on computers, I suggest reading the following Q&A: Why is 24.0000 not equal to 24.0000 in MATLAB?
Sym solution:
count = 20;
n = zeros(count, 1);
P = sym('integer',[count, 1]);
for i = 1:count
n(i) = i;
P(i) = sym(i)^i + (sym(1-i))^(i-1);
if i == (count)
T = table(n,P)
end
end
returns
>> T.P(20)
ans =
102879180344339686410876021

Related

Optimize nested for loop for calculating xcorr of matrix rows

I have 2 nested loops which do the following:
Get two rows of a matrix
Check if indices meet a condition or not
If they do: calculate xcorr between the two rows and put it into new vector
Find the index of the maximum value of sub vector and replace element of LAG matrix with this value
I dont know how I can speed this code up by vectorizing or otherwise.
b=size(data,1);
F=size(data,2);
LAG= zeros(b,b);
for i=1:b
for j=1:b
if j>i
x=data(i,:);
y=data(j,:);
d=xcorr(x,y);
d=d(:,F:(2*F)-1);
[M,I] = max(d);
LAG(i,j)=I-1;
d=xcorr(y,x);
d=d(:,F:(2*F)-1);
[M,I] = max(d);
LAG(j,i)=I-1;
end
end
end
First, a note on floating point precision...
You mention in a comment that your data contains the integers 0, 1, and 2. You would therefore expect a cross-correlation to give integer results. However, since the calculation is being done in double-precision, there appears to be some floating-point error introduced. This error can cause the results to be ever so slightly larger or smaller than integer values.
Since your calculations involve looking for the location of the maxima, then you could get slightly different results if there are repeated maximal integer values with added precision errors. For example, let's say you expect the value 10 to be the maximum and appear in indices 2 and 4 of a vector d. You might calculate d one way and get d(2) = 10 and d(4) = 10.00000000000001, with some added precision error. The maximum would therefore be located in index 4. If you use a different method to calculate d, you might get d(2) = 10 and d(4) = 9.99999999999999, with the error going in the opposite direction, causing the maximum to be located in index 2.
The solution? Round your cross-correlation data first:
d = round(xcorr(x, y));
This will eliminate the floating-point errors and give you the integer results you expect.
Now, on to the actual solutions...
Solution 1: Non-loop option
You can pass a matrix to xcorr and it will perform the cross-correlation for every pairwise combination of columns. Using this, you can forego your loops altogether like so:
d = round(xcorr(data.'));
[~, I] = max(d(F:(2*F)-1,:), [], 1);
LAG = reshape(I-1, b, b).';
Solution 2: Improved loop option
There are limits to how large data can be for the above solution, since it will produce large intermediate and output variables that can exceed the maximum array size available. In such a case for loops may be unavoidable, but you can improve upon the for-loop solution above. Specifically, you can compute the cross-correlation once for a pair (x, y), then just flip the result for the pair (y, x):
% Loop over rows:
for row = 1:b
% Loop over upper matrix triangle:
for col = (row+1):b
% Cross-correlation for upper triangle:
d = round(xcorr(data(row, :), data(col, :)));
[~, I] = max(d(:, F:(2*F)-1));
LAG(row, col) = I-1;
% Cross-correlation for lower triangle:
d = fliplr(d);
[~, I] = max(d(:, F:(2*F)-1));
LAG(col, row) = I-1;
end
end

MATLAB: Find abbreviated version of matrix that minimises sum of matrix elements

I have a 151-by-151 matrix A. It's a correlation matrix, so there are 1s on the main diagonal and repeated values above and below the main diagonal. Each row/column represents a person.
For a given integer n I will seek to reduce the size of the matrix by kicking people out, such that I am left with a n-by-n correlation matrix that minimises the total sum of the elements. In addition to obtaining the abbreviated matrix, I also need to know the row number of the people who should be booted out of the original matrix (or their column number - they'll be the same number).
As a starting point I take A = tril(A), which will remove redundant off-diagonal elements from the correlation matrix.
So, if n = 4 and we have the hypothetical 5-by-5 matrix above, it's very clear that person 5 should be kicked out of the matrix, since that person is contributing a lot of very high correlations.
It's also clear that person 1 should not be kicked out, since that person contributes a lot of negative correlations, and thus brings down the sum of the matrix elements.
I understand that sum(A(:)) will sum everything in the matrix. However, I'm very unclear about how to search for the minimum possible answer.
I noticed a similar question Finding sub-matrix with minimum elementwise sum, which has a brute force solution as the accepted answer. While that answer works fine there it's impractical for a 151-by-151 matrix.
EDIT: I had thought of iterating, but I don't think that truly minimizes the sum of elements in the reduced matrix. Below I have a 4-by-4 correlation matrix in bold, with sums of rows and columns on the edges. It's apparent that with n = 2 the optimal matrix is the 2-by-2 identity matrix involving Persons 1 and 4, but according to the iterative scheme I would have kicked out Person 1 in the first phase of iteration, and so the algorithm makes a solution that is not optimal. I wrote a program that always generated optimal solutions, and it works well when n or k are small, but when trying to make an optimal 75-by-75 matrix from a 151-by-151 matrix I realised my program would take billions of years to terminate.
I vaguely recalled that sometimes these n choose k problems can be resolved with dynamic programming approaches that avoid recomputing things, but I can't work out how to solve this, and nor did googling enlighten me.
I'm willing to sacrifice precision for speed if there's no other option, or the best program will take more than a week to generate a precise solution. However, I'm happy to let a program run for up to a week if it will generate a precise solution.
If it's not possible for a program to optimise the matrix within an reasonable timeframe, then I would accept an answer that explains why n choose k tasks of this particular sort can't be resolved within reasonable timeframes.
This is an approximate solution using a genetic algorithm.
I started with your test case:
data_points = 10; % How many data points will be generated for each person, in order to create the correlation matrix.
num_people = 25; % Number of people initially.
to_keep = 13; % Number of people to be kept in the correlation matrix.
to_drop = num_people - to_keep; % Number of people to drop from the correlation matrix.
num_comparisons = 100; % Number of times to compare the iterative and optimization techniques.
for j = 1:data_points
rand_dat(j,:) = 1 + 2.*randn(num_people,1); % Generate random data.
end
A = corr(rand_dat);
then I defined the functions you need to evolve the genetic algorithm:
function individuals = user1205901individuals(nvars, FitnessFcn, gaoptions, num_people)
individuals = zeros(num_people,gaoptions.PopulationSize);
for cnt=1:gaoptions.PopulationSize
individuals(:,cnt)=randperm(num_people);
end
individuals = individuals(1:nvars,:)';
is the individual generation function.
function fitness = user1205901fitness(ind, A)
fitness = sum(sum(A(ind,ind)));
is the fitness evaluation function
function offspring = user1205901mutations(parents, options, nvars, FitnessFcn, state, thisScore, thisPopulation, num_people)
offspring=zeros(length(parents),nvars);
for cnt=1:length(parents)
original = thisPopulation(parents(cnt),:);
extraneus = setdiff(1:num_people, original);
original(fix(rand()*nvars)+1) = extraneus(fix(rand()*(num_people-nvars))+1);
offspring(cnt,:)=original;
end
is the function to mutate an individual
function children = user1205901crossover(parents, options, nvars, FitnessFcn, unused, thisPopulation)
children=zeros(length(parents)/2,nvars);
cnt = 1;
for cnt1=1:2:length(parents)
cnt2=cnt1+1;
male = thisPopulation(parents(cnt1),:);
female = thisPopulation(parents(cnt2),:);
child = union(male, female);
child = child(randperm(length(child)));
child = child(1:nvars);
children(cnt,:)=child;
cnt = cnt + 1;
end
is the function to generate a new individual coupling two parents.
At this point you can define your problem:
gaproblem2.fitnessfcn=#(idx)user1205901fitness(idx,A)
gaproblem2.nvars = to_keep
gaproblem2.options = gaoptions()
gaproblem2.options.PopulationSize=40
gaproblem2.options.EliteCount=10
gaproblem2.options.CrossoverFraction=0.1
gaproblem2.options.StallGenLimit=inf
gaproblem2.options.CreationFcn= #(nvars,FitnessFcn,gaoptions)user1205901individuals(nvars,FitnessFcn,gaoptions,num_people)
gaproblem2.options.CrossoverFcn= #(parents,options,nvars,FitnessFcn,unused,thisPopulation)user1205901crossover(parents,options,nvars,FitnessFcn,unused,thisPopulation)
gaproblem2.options.MutationFcn=#(parents, options, nvars, FitnessFcn, state, thisScore, thisPopulation) user1205901mutations(parents, options, nvars, FitnessFcn, state, thisScore, thisPopulation, num_people)
gaproblem2.options.Vectorized='off'
open the genetic algorithm tool
gatool
from the File menu select Import Problem... and choose gaproblem2 in the window that opens.
Now, run the tool and wait for the iterations to stop.
The gatool enables you to change hundreds of parameters, so you can trade speed for precision in the selected output.
The resulting vector is the list of indices that you have to keep in the original matrix so A(garesults.x,garesults.x) is the matrix with only the desired persons.
If I have understood you problem statement, you have a N x N matrix M (which happens to be a correlation matrix), and you wish to find for integer n where 2 <= n < N, a n x n matrix m which minimises the sum over all elements of m which I denote f(m)?
In Matlab it is fairly easy and fast to obtain a sub-matrix of a matrix (see for example Removing rows and columns from matrix in Matlab), and the function f is relatively inexpensive to evaluate for n = 151. So why can't you implement an algorithm that solves this backwards dynamically in a program as below where I have sketched out the pseudocode:
function reduceM(M, n){
m = M
for (ii = N to n+1) {
for (jj = 1 to ii) {
val(jj) = f(m) where mhas column and row jj removed, f(X) being summation over all elements of X
}
JJ(ii) = jj s.t. val(jj) is smallest
m = m updated by removing column and row JJ(ii)
}
}
In the end you end up with an m of dimension n which is the solution to your problem and a vector JJ which contains the indices removed at each iteration (you should easily be able to convert these back to indices applicable to the full matrix M)
There are several approaches to finding an approximate solution (eg. quadratic programming on relaxed problem or greedy search), but finding the exact solution is an NP-hard problem.
Disclaimer: I'm not an expert on binary quadratic programming, and you may want to consult the academic literature for more sophisticated algorithms.
Mathematically equivalent formulation:
Your problem is equivalent to:
For some symmetric, positive semi-definite matrix S
minimize (over vector x) x'*S*x
subject to 0 <= x(i) <= 1 for all i
sum(x)==n
x(i) is either 1 or 0 for all i
This is a quadratic programming problem where the vector x is restricted to taking only binary values. Quadratic programming where the domain is restricted to a set of discrete values is called mixed integer quadratic programming (MIQP). The binary version is sometimes called Binary Quadratic Programming (BQP). The last restriction, that x is binary, makes the problem substantially more difficult; it destroys the problem's convexity!
Quick and dirty approach to finding an approximate answer:
If you don't need a precise solution, something to play around with might be a relaxed version of the problem: drop the binary constraint. If you drop the constraint that x(i) is either 1 or 0 for all i, then the problem becomes a trivial convex optimization problem and can be solved nearly instantaneously (eg. by Matlab's quadprog). You could try removing entries that, on the relaxed problem, quadprog assigns the lowest values in the x vector, but this does not truly solve the original problem!
Note also that the relaxed problem gives you a lower bound on the optimal value of the original problem. If your discretized version of the solution to the relaxed problem leads to a value for the objective function close to the lower bound, there may be a sense in which this ad-hoc solution can't be that far off from the true solution.
To solve the relaxed problem, you might try something like:
% k is number of observations to drop
n = size(S, 1);
Aeq = ones(1,n)
beq = n-k;
[x_relax, f_relax] = quadprog(S, zeros(n, 1), [], [], Aeq, beq, zeros(n, 1), ones(n, 1));
f_relax = f_relax * 2; % Quadprog solves .5 * x' * S * x... so mult by 2
temp = sort(x_relax);
cutoff = temp(k);
x_approx = ones(n, 1);
x_approx(x_relax <= cutoff) = 0;
f_approx = x_approx' * S * x_approx;
I'm curious how good x_approx is? This doesn't solve your problem, but it might not be horrible! Note that f_relax is a lower bound on the solution to the original problem.
Software to solve your exact problem
You should check out this link and go down to the section on Mixed Integer Quadratic Programming (MIQP). It looks to me that Gurobi can solve problems of your type. Another list of solvers is here.
Working on a suggestion from Matthew Gunn and also some advice at the Gurobi forums, I came up with the following function. It seems to work pretty well.
I will award it the answer, but if someone can come up with code that works better I'll remove the tick from this answer and place it on their answer instead.
function [ values ] = the_optimal_method( CM , num_to_keep)
%the_iterative_method Takes correlation matrix CM and number to keep, returns list of people who should be kicked out
N = size(CM,1);
clear model;
names = strseq('x',[1:N]);
model.varnames = names;
model.Q = sparse(CM); % Gurobi needs a sparse matrix as input
model.A = sparse(ones(1,N));
model.obj = zeros(1,N);
model.rhs = num_to_keep;
model.sense = '=';
model.vtype = 'B';
gurobi_write(model, 'qp.mps');
results = gurobi(model);
values = results.x;
end

Matlab code to split a random data

In Matlab, how can I split a random data into two matrices, for example: X(i) is a random vector, where i=1:100, every data symbol is formed from four bits, where x(1) and x(2) are the MSB(Most Significant Bits), x(3) and x(4) are the LSB(Least Significant Bits). I want to split them to get a new matrices y1(for the MSB) and y2(for the LSB).
EDIT
Here is some example code but for some reason it does not seem to work,
M=16;
N=10;
c=randi([0 M-1],1,N);
xx=dec2bin(c);
for k = 1:N-1
for j= 1:4
y1(k)=xx(k);
y1(k+1)=xx(k+1);
y2(k+2)= xx(k+2);
y2(k+3)= xx(k+3);
end
end
The code you wrote seems to have some issues. I think some of the problems is based on a misunderstanding of matlab. I will write a short list of some issue here:
1) There is no string class in matlab. Instead there is char arrays. Further, Matlab does not use pointers or reference in the same ways as Java or c++. This means that you cannot have a vector with char arrays as you have there. This also mean y1 and y2 must be a matlab cell or a matrix to store the data.
2) If c is a vector, then xx will be a matrix and size(xx) == [length(c),dec2bin(max(x))] So to say, each string of binary values is a row and every row is exactly large enough for the the largest string to fit, eg.
a = [13,257];
b = dec2bin(a);
where b is a 2x9 matrix since b needs at least nine bits. So to your problem. I will vectorize the solution and also use the extra agument in dec2bin to lock the number of bits to 4. Try this,
function [msBit, lsBit] = test()
M=16;
N=10;
if M>16
error('M must not be greater than 4 bits');
end
c=randi([0 M-1],1,N);
xx = dec2bin(c,4);
disp xx
disp(xx)
disp ' '
% Take the 2 most significant bits from every row
msBit = xx(:,1:2);
% Take the 2 least significant bits from every row
lsBit = xx(:,3:4);
disp msb
disp(msBit);
disp ' '
disp lsb
disp(lsBit);
It is of course possible to work with int8 as well, then we need to use the bitwise operaton functions. This is more difficult and the result will of course be an int. So 1100 will be represented by 12. This does not seem to be what you are after though, so I will not do this here.
Hope it works and good luck!

Calculating the product of all the odd numbers

So I am trying to create a script that calculates the product of all the odd numbers from 1 to 1000 (using MATLAB). The program runs but the product is not correct:
%Program is meant to calculate the product of all the odd numbers from 1 to 1000
% declare variable ‘product’ as zero
product = 0.;
% initialize counter, ‘n’, to 1000
n = 1000;
for i = 1:2:n
product = product + i;
end
fprintf('The product of all the odd numbers from 1 to %d is %d\n', n, product)
So I'm not really sure how to go about this and am looking for some guidance. Thanks!
Solution
Currently, your script is set to add all of the odd numbers from 1 to 1000.
To perform the product, you just need to change the starting value of product to 1 and multiply within the loop:
product = 1;
for i = 1:2:1000
product = product * i;
end
However, it is faster to create a vector and have the built-in prod function perform the multiplication:
product = prod(1:2:1000);
Problem
MATLAB does not by default have enough memory in the default 64-bit numbers to compute the exact value of this product.
The number is too large since this is essentially a factorial.
You'll find that MATLAB returns Inf for the 500 numbers you're multiplying, and it is only finite for up to 150 elements.
In fact, using floating point arithmetic, the number is only accurate up to 15 digits for the first 17 digits using floats (integers saturate at that level as well).
Using Mathematica (which can perform arbitrary digit arithmetic out-of-the-box since I'm feeling lazy), I can see that the answer needs at least 1300 digits of precision, which we can have MATLAB do through the Symbolic Toolbox's vpa function:
digits(1300);
p = vpa(1);
pint = vpa(1);
for k = 2:N
pint = pint*p(k);
end
disp(pint);
>> StackOverflow
100748329763750854004038917392303538250323418583550415705013777513334847930864905026212149922688916514224446856302103818809813965739969905602683824057028542369814437703275217182106137628427025253936696857063927677887236450311036887007989218384076420973974651860279864376153012567675767840733574225799002463604490891982796305162134708837541147007332276627034016790073315219533088052639255340728943149219519187498959529434982654113006616219355830114439411562650611374970334868978510289340267833632215930432706056111069583472778227977585526504938921664232801595705593340414168289146933191250605578218896799783237156997993612173843567447982392426109444012350386990916069363415575527636429080027392875413821124412782341957015410685185402984322002697631153866494712956244870206835064084512590679022924697003630949759950902438767963278695296882620493296103779237046934780464541286585179975172680371269700518965123152181467825566303777704391998857792627009043170482928030252033752456172692668989206857862233381387134495504231267039972111966329704875185659372569246229419619030694680808504265784672316785572965414328005856656944666840982779185954031239345256896720409853053597049715408663604581472840976596002762935980048845023622727663267632821809277089697420848324327380396425724029541015625.0

Okay to use double for == comparison and indexing?

In this answer gire mentioned to better not use == when comparing doubles.
When creating a increment variable in a for loop using start:step:stop notation, it's type will be of double. If one wants to use this loop variable for indexing and == comparisons, might that cause problems due to floating point precision?!
Should one use integers? If so, is there a way to do so with the s:s:s notation?
Here's an example
a = rand(1, 5);
for ii = length(a):-1:1
if (ii == 1) % Comparing var of type double with ==
b = 0;
else
b = a(ii); % Using double for indexing
end
... % Code
end
Note that the floating point double specification uses 52 bits to store the mantissa (the part after the decimal point) so you can exactly represent any integer in the range
-4503599627370496 <= x <= 4503599627370496
Note that this is larger than the range of an int32, which can only represent
-2147483648 <= x <= 2147483647
If you are just using the double as a loop variable, and only incrementing it in integer steps, and you are not counting above 4,503,599,627,370,496 then you are fine to use a double, and to use == to compare doubles.
One reason people suggest for not using doubles is that you can't represent some common decimals exactly, e.g. 0.1 has no exact representation as a double. Therefore if you are working with monetary values, it may be better to separately store the data as an int and remember a scale factor of 10x or 100x or whatever.
It's sometimes bad to directly compare floating point numbers for equality because rounding issues can cause two floats to be not equal, even though the numbers are mathematically equal. This generally happens when the numbers are not exactly representable as floats, or when there is a significant size difference between the numbers, e.g.
>> 0.3 - 0.2 == 0.1
ans =
0
If you're indexing between integer bounds with integer steps (even though the variable class is actually double), it is ok to use == for comparisons with other integers.
You can cast the indices, if you really want to be safe.
For example:
for ii = int16(length(a):-1:1)
if (ii == 1)
b = 0;
end
end