How to remove bias when downsampling a vector in Matlab - matlab

I have a set of vectors containing some arbitrary shape like a triangle pulse with a single maxima.
I need to downsample these vectors by an integer factor.
The position of the maxima relative to the length of the vector should stay the same.
Below code shows, that when I do this, there is a bias=-0.0085 introduced by the downsampling step which should be zero on average.
The bias doesn't seem to change much depending on the number of vectors (tried between 200 and 800 vectors)
.
I also tried different resampling functions like downsample and decimate leading to the same results.
datapoints = zeros(1000,800);
for ii = 1:size(datapoints,2)
datapoints(ii:ii+18,ii) = [1:10,9:-1:1];
end
%downsample each column of the data
datapoints_downsampled = datapoints(1:10:end,:);
[~,maxinds_downsampled] = max(datapoints_downsampled);
[~,maxinds] = max(datapoints);
%bias needs to be zero
bias = mean(maxinds/size(datapoints,1)-maxinds_downsampled/size(datapoints_downsampled,1))
This graph shows, that there is a systematic bias that does not depend on the number of vectors
How to remove this bias? Is there a way to determine its magnitude given only one vector?
Where does it come from?

There are two main issues with the code:
Dividing the index by the length of the vector leads to a small bias: if the max is at the first element, then 1/1000 is not the same as 1/100, even though the subsampling preserved the element that contained the maximum. This needs to be corrected for by subtracting 1 before the division, and adding 1/1000 after the division.
Subsampling by a factor of 10 leads to a bias as well: since we're determining the integer location only, in 1/10 cases we preserve the location, in 4/10 cases we move the location in one direction, and in 5/10 cases we move the location in the other direction. The solution is to use an odd subsampling factor, or to determine the location of the maximum with sub-sample precision (this requires proper low-pass filtering before subsampling).
The code below is a modification of the code in the OP, it does a scatter plot of the error vs the location, as well as OP's bias plot. The first plot helps identify issue #2 above. I have made the subsampling factor and the offset for subsampling variables, I recommend that you play with these values to understand what is happening. I have also made the location of the maximum random to avoid a sampling bias. Note I also use N/factor instead of size(datapoints_downsampled,1). The size of the downsampled vector is the wrong value to use if N/factor is not integer.
N = 1000;
datapoints = zeros(N,800);
for ii = 1:size(datapoints,2)
datapoints(randi(N-20)+(1:19),ii) = [1:10,9:-1:1];
end
factor = 11;
offset = round(factor/2);
datapoints_downsampled = datapoints(offset:factor:end,:);
[~,maxinds_downsampled] = max(datapoints_downsampled,[],1);
[~,maxinds] = max(datapoints,[],1);
maxpos_downsampled = (maxinds_downsampled-1)/(N/factor) + offset/N;
maxpos = (maxinds)/N;
subplot(121), scatter(maxpos,maxpos_downsampled-maxpos)
bias = cumsum(maxpos_downsampled-maxpos)./(1:size(datapoints,2));
subplot(122), plot(bias)

Related

Any good ways to obtain zero local means in audio signals?

I have asked this question on DSP.SE before, but my question has got no attention. Maybe it was not so related to signal processing.
I needed to divide a discrete audio signal into segments to have some statistical processing and analysis on them. Therefore, segments with fixed local mean would be very helpful for my case. Length of segments are predefined, e.g. 512 samples.
I have tried several things. I do use reshape() function to divide audio signal into segments, and then calculate means of every segment as:
L = 512; % Length of segment
N = floor(length(audio(:,1))/L); % Number of segments
seg = reshape(audio(1:N*L,1), L, N); % Reshape into LxN sized matrix
x = mean(seg); % Calculate mean of each column
Subtracting x(k) from each seg(:,k) would make each local mean zero, yet it would distort audio signal a lot when segments are joined back.
So, since mean of hanning window is almost 0.5, substracting 2*x(k)*hann(L) from each seg(:,k) was the first thing I tried. But this time multiplying by 2 (to make the mean of hanning window be almost equal to 1) distorted the neighborhood of midpoints in each segments itself.
Then, I have used convolution by a smaller hanning window instead of multiplying directly, and subtracting these (as shown in figure below) from each seg(:,k).
This last step gives better results, yet it is still not very useful when segments are smaller. I have seen many amazing approaches here on this site for different problems. So I just wonder if there is any clever ways or existing methods to obtain zero local means which distorts an audio signal less. I read that, this property is useful in some decompositions such as EMD. So maybe I need such decompositions?
You can try to use a moving average filter:
x = cumsum(rand(15*512, 1)-0.5); % generate a random input signal
mean_filter = 1/512 * ones(1, 512); % generate a mean filter
mean = filtfilt(mean_filter, 1, x); % filtfilt is used instead of filter to obtain a symmetric moving average.
% plot the result
figure
subplot(2,1,1)
plot(x);
hold on
plot(mean);
subplot(2,1,2)
plot(x - mean);
You can tune the filter by changing the interval of the mean filter. Using a smaller interval, results in lower means inside each interval, but filters also more low frequencies out of your signal.

Scale correction for IFFT of smaller frequency space created by FFT

This might be considered a repost of this question however I am seeking a much deeper explanation on this matter and how to properly solve this problem.
I want to study the PSF/SRF of a voxel in a 44x44 matrix. For that I create a matrix 100x bigger (4400x4400) so 1 voxel in the smaller matrix corresponds to 100x100 voxels in the bigger one. I set the values to 1 of those 100^2 voxels.
Now I do a FFT of the big matrix and an IFFT of only the center portion (44x44) of the frequency space. This is the code:
A = zeros(4400,4400);
A(2201:2300,2201:2300) = 1;
B = fftshift(fft2(A));
C = ifft2(ifftshift(B(2179:2222,2179:2222)));
D = numel(C)/numel(B) * C;
figure, subplot(1,3,1), imshow(A), subplot(1,3,2), imshow(real(C)), subplot(1,3,3), imshow(real(D));
The problem is the following: I would expect the value in the voxel of the new 44x44 matrix to be 1. However, using this numel factor correction they decrease to 0.35. And if I don't apply the correction they go up to huge values.
For starters, let me try to clarify the scaling issue: For the DFT/IDFT there are various scaling conventions regarding the input size. You either need a factor of 1/N in the DFT or a factor of 1/N in the IDFT or a factor of 1/sqrt(N) in both. All have pros and cons and all are equally valid.
Matlab uses the 1/N in the IDFT convention, as you can see in the documentation.
In your example, the forward DFT has a size 4400, the backward IDFT a size of 44. Therefore the IDFT scaling is a factor 100 less than it should be to match the forward transformation and your values are a factor of 100 too large. Since you're doing a 2-D DFT/IDFT, the factor 100 is missing twice, so your rescaling should be 100^2. Your numel(C)/numel(B) does exactly that, I've just tried to give you the explanation for it.
A reason why you might not see the 1 is that you're plotting only the real part of the inverse DFT. Since you did some fftshifting you might have introduced a phase so that part of your signal is in the imaginary part.
edit: Another reason is that you truncate B to the central 44 by 44 window before transforming back. Since A is not bandlimited, B has energy also outside this window. By truncating you are losing a part of it. Therefore, it is not surprising that the resulting amplitude is lower.
Here is a zoom on the image of B to show this phenomenon:
The red square is what you keep, everything else is truncated. Due to Parsevals theorem, the total energy in image and Fourier domain is equal so by truncation you must also reduce the energy of your signal in the image domain.

matlab code for perceptual hashing

I need a matlab code for a perceptual hashing algorithm descried here:
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
Basically I want this to remove deatails in an image and only leave the major structure components information.
To do so, I think I need the following steps:
1. Reduce the DCT. Suppose the DCT is 32x32 (), just keep the top-left 8x8. Those represent the lowest frequencies in the picture.
Compute the average value. Like the Average Hash, compute the mean DCT value (using only the 8x8 DCT low-frequency values and excluding the first term since the DC coefficient can be significantly different from the other values and will throw off the average).
Further reduce the DCT. Set the 64 hash bits to 0 or 1 depending on whether each of the 64 DCT values is above or below the average value. The result doesn't tell us the actual low frequencies; it just tells us the very-rough relative scale of the frequencies to the mean. The result will not vary as long as the overall structure of the image remains the same; this can survive gamma and color histogram adjustments without a problem.
reconstruct image after the processing.
Anyone can help on any one of above steps?
I have tried some code that gives some results (in the below link), it is not yet perfect:
https://stackoverflow.com/questions/26748051/extract-low-frequency-from-dct-coeffecients-of-an-image-in-matlab
Try this:
% read image
I = imread('cameraman.tif');
% cosine transform and reduction
d = dct2(I);
d = d(1:8,1:8);
% compute average
a = mean(mean(d));
% set bits, here unclear whether > or >= shall be used
b = d > a;
% maybe convert to string:
string = num2str(b(:)');

Define the width of peak in Matlab

I'm trying to find some peaks in Matlab, but the function findpeaks.m doesn't have the width option. The peaks I want to be detected are in the balls. All the detected are in the red squares. As you can see they have a low width. Any help?
here's the code I use:
[pk,lo] = findpeaks(ecg);
lo2 = zeros(size(lo));
for m = 1:length(lo) - 1
if (ecg(m) - ecg(m+1)) > 0.025
lo2(m) = lo(m);
end
end
p = find(lo2 == 0);
lo2(p) = [];
figure, plot(ecg);
hold on
plot(lo, ecg(lo), 'rs');
By the looks of it you want to characterise each peak in terms of amplitude and width, so that you can apply thresholds (or simmilar) to these values to select only those meeting your criteria (tall and thin).
One way you could do this is to fit a normal distribution to each peak, pegging the mean and amplitude to the value you have found already, and using an optimisation function to find the standard deviation (width of normal distribution).
So, you would need a function which calculates a representation of your data based on the sum of all the gaussian distributions you have, and an error function (mean squared error perhaps) then you just need to throw this into one of matlabs inbuilt optimisation/minimisation functions.
The optimal set of standard deviation parameters would give you the widths of each peak, or at least a good approximation.
Another method, based on Adiel's comment and which is perhaps more appropriate since it looks like you are working on ecg data, would be to also find the local minima (troughs) as well as the peaks. From this you could construct an approximate measure of 'thinness' by taking the x-axis distance between the troughs on either side of a given peak.
You need to define a peak width first, determine how narrow you want your peaks to be and then select them accordingly.
For instance, you can define the width of a peak as the difference between the x-coordinates at which the y-coordinates equal to half of the peak's value (see here). Another approach, (which seems more appropriate here) is to measure the gradient at fixed distances from the peak itself, and selecting the peaks accordingly. In MATLAB, you'll probably use a gradient filter for that :
g = conv(ecg, [-1 0 1], 'same'); %// Gradient filter
idx = g(lo) > thr); %// Indices of narrow peaks
lo = lo(idx);
where thr is the threshold value that you need to determine for yourself. Lower threshold values mean more tolerance for wider peaks.
You need to define what it means to be a peak of interest, and what you mean by the width of that peak. Once you do those things, you are a step ahead.
Perhaps you might locate each peak using find peaks. Then locate the troughs, one of which should lie between each pair of peaks. A trough is simply a peak of -y. Make sure you worry about the first and last peaks/troughs.
Next, define the half height points as the location midway in height between each peak and trough. This can be done using a reverse linear interpolation on the curve.
Finally, the width at half height might be simply the distance (on the x axis) between those two half height points.
Thinking pragmatically, I suppose you could use something along the lines of this simple brute-force approach:
[peaks , peakLocations] = findpeaks(+X);
[troughs, troughLocations] = findpeaks(-X);
width = zeros(size(peaks));
for ii = 1:numel(peaks)
trough_before = troughLocations( ...
find(troughLocations < peakLocations(ii), 1,'last') );
trough_after = troughLocations( ...
find(troughLocations > peakLocations(ii), 1,'first') );
width(ii) = trough_after - trough_before;
end
This will find the distance between the two troughs surrounding a peak of interest.
Use the 'MinPeakHeight' option in findpeaks() to pre-prune your data. By the looks of it, there is no automatic way to extract the peaks you want (unless you somehow have explicit indices to them). Meaning, you'll have to select them manually.
Now of course, there will be many more details that will have to be dealt with, but given the shape of your data set, I think the underlying idea here can nicely solve your problem.

DSP - Filtering in the frequency domain via FFT

I've been playing around a little with the Exocortex implementation of the FFT, but I'm having some problems.
Whenever I modify the amplitudes of the frequency bins before calling the iFFT the resulting signal contains some clicks and pops, especially when low frequencies are present in the signal (like drums or basses). However, this does not happen if I attenuate all the bins by the same factor.
Let me put an example of the output buffer of a 4-sample FFT:
// Bin 0 (DC)
FFTOut[0] = 0.0000610351563
FFTOut[1] = 0.0
// Bin 1
FFTOut[2] = 0.000331878662
FFTOut[3] = 0.000629425049
// Bin 2
FFTOut[4] = -0.0000381469727
FFTOut[5] = 0.0
// Bin 3, this is the first and only negative frequency bin.
FFTOut[6] = 0.000331878662
FFTOut[7] = -0.000629425049
The output is composed of pairs of floats, each representing the real and imaginay parts of a single bin. So, bin 0 (array indexes 0, 1) would represent the real and imaginary parts of the DC frequency. As you can see, bins 1 and 3 both have the same values, (except for the sign of the Im part), so I guess bin 3 is the first negative frequency, and finally indexes (4, 5) would be the last positive frequency bin.
Then to attenuate the frequency bin 1 this is what I do:
// Attenuate the 'positive' bin
FFTOut[2] *= 0.5;
FFTOut[3] *= 0.5;
// Attenuate its corresponding negative bin.
FFTOut[6] *= 0.5;
FFTOut[7] *= 0.5;
For the actual tests I'm using a 1024-length FFT and I always provide all the samples so no 0-padding is needed.
// Attenuate
var halfSize = fftWindowLength / 2;
float leftFreq = 0f;
float rightFreq = 22050f;
for( var c = 1; c < halfSize; c++ )
{
var freq = c * (44100d / halfSize);
// Calc. positive and negative frequency indexes.
var k = c * 2;
var nk = (fftWindowLength - c) * 2;
// This kind of attenuation corresponds to a high-pass filter.
// The attenuation at the transition band is linearly applied, could
// this be the cause of the distortion of low frequencies?
var attn = (freq < leftFreq) ?
0 :
(freq < rightFreq) ?
((freq - leftFreq) / (rightFreq - leftFreq)) :
1;
// Attenuate positive and negative bins.
mFFTOut[ k ] *= (float)attn;
mFFTOut[ k + 1 ] *= (float)attn;
mFFTOut[ nk ] *= (float)attn;
mFFTOut[ nk + 1 ] *= (float)attn;
}
Obviously I'm doing something wrong but can't figure out what.
I don't want to use the FFT output as a means to generate a set of FIR coefficients since I'm trying to implement a very basic dynamic equalizer.
What's the correct way to filter in the frequency domain? what I'm missing?
Also, is it really needed to attenuate negative frequencies as well? I've seen an FFT implementation where neg. frequency values are zeroed before synthesis.
Thanks in advance.
There are two issues: the way you use the FFT, and the particular filter.
Filtering is traditionally implemented as convolution in the time domain. You're right that multiplying the spectra of the input and filter signals is equivalent. However, when you use the Discrete Fourier Transform (DFT) (implemented with a Fast Fourier Transform algorithm for speed), you actually calculate a sampled version of the true spectrum. This has lots of implications, but the one most relevant to filtering is the implication that the time domain signal is periodic.
Here's an example. Consider a sinusoidal input signal x with 1.5 cycles in the period, and a simple low pass filter h. In Matlab/Octave syntax:
N = 1024;
n = (1:N)'-1; %'# define the time index
x = sin(2*pi*1.5*n/N); %# input with 1.5 cycles per 1024 points
h = hanning(129) .* sinc(0.25*(-64:1:64)'); %'# windowed sinc LPF, Fc = pi/4
h = [h./sum(h)]; %# normalize DC gain
y = ifft(fft(x) .* fft(h,N)); %# inverse FT of product of sampled spectra
y = real(y); %# due to numerical error, y has a tiny imaginary part
%# Depending on your FT/IFT implementation, might have to scale by N or 1/N here
plot(y);
And here's the graph:
The glitch at the beginning of the block is not what we expect at all. But if you consider fft(x), it makes sense. The Discrete Fourier Transform assumes the signal is periodic within the transform block. As far as the DFT knows, we asked for the transform of one period of this:
This leads to the first important consideration when filtering with DFTs: you are actually implementing circular convolution, not linear convolution. So the "glitch" in the first graph is not really a glitch when you consider the math. So then the question becomes: is there a way to work around the periodicity? The answer is yes: use overlap-save processing. Essentially, you calculate N-long products as above, but only keep N/2 points.
Nproc = 512;
xproc = zeros(2*Nproc,1); %# initialize temp buffer
idx = 1:Nproc; %# initialize half-buffer index
ycorrect = zeros(2*Nproc,1); %# initialize destination
for ctr = 1:(length(x)/Nproc) %# iterate over x 512 points at a time
xproc(1:Nproc) = xproc((Nproc+1):end); %# shift 2nd half of last iteration to 1st half of this iteration
xproc((Nproc+1):end) = x(idx); %# fill 2nd half of this iteration with new data
yproc = ifft(fft(xproc) .* fft(h,2*Nproc)); %# calculate new buffer
ycorrect(idx) = real(yproc((Nproc+1):end)); %# keep 2nd half of new buffer
idx = idx + Nproc; %# step half-buffer index
end
And here's the graph of ycorrect:
This picture makes sense - we expect a startup transient from the filter, then the result settles into the steady state sinusoidal response. Note that now x can be arbitrarily long. The limitation is Nproc > 2*min(length(x),length(h)).
Now onto the second issue: the particular filter. In your loop, you create a filter who's spectrum is essentially H = [0 (1:511)/512 1 (511:-1:1)/512]'; If you do hraw = real(ifft(H)); plot(hraw), you get:
It's hard to see, but there are a bunch of non-zero points at the far left edge of the graph, and then a bunch more at the far right edge. Using Octave's built-in freqz function to look at the frequency response we see (by doing freqz(hraw)):
The magnitude response has a lot of ripples from the high-pass envelope down to zero. Again, the periodicity inherent in the DFT is at work. As far as the DFT is concerned, hraw repeats over and over again. But if you take one period of hraw, as freqz does, its spectrum is quite different from the periodic version's.
So let's define a new signal: hrot = [hraw(513:end) ; hraw(1:512)]; We simply rotate the raw DFT output to make it continuous within the block. Now let's look at the frequency response using freqz(hrot):
Much better. The desired envelope is there, without all the ripples. Of course, the implementation isn't so simple now, you have to do a full complex multiply by fft(hrot) rather than just scaling each complex bin, but at least you'll get the right answer.
Note that for speed, you'd usually pre-calculate the DFT of the padded h, I left it alone in the loop to more easily compare with the original.
Your primary issue is that frequencies aren't well defined over short time intervals. This is particularly true for low frequencies, which is why you notice the problem most there.
Therefore, when you take really short segments out of the sound train, and then you filter these, the filtered segments wont filter in a way that produces a continuous waveform, and you hear the jumps between segments and this is what generates the clicks you here.
For example, taking some reasonable numbers: I start with a waveform at 27.5 Hz (A0 on a piano), digitized at 44100 Hz, it will look like this (where the red part is 1024 samples long):
So first we'll start with a low pass of 40Hz. So since the original frequency is less than 40Hz, a low-pass filter with a 40Hz cut-off shouldn't really have any effect, and we will get an output that almost exactly matches the input. Right? Wrong, wrong, wrong – and this is basically the core of your problem. The problem is that for the short sections the idea of 27.5 Hz isn't clearly defined, and can't be represented well in the DFT.
That 27.5 Hz isn't particularly meaningful in the short segment can be seen by looking at the DFT in the figure below. Note that although the longer segment's DFT (black dots) shows a peak at 27.5 Hz, the short one (red dots) doesn't.
Clearly, then filtering below 40Hz, will just capture the DC offset, and the result of the 40Hz low-pass filter is shown in green below.
The blue curve (taken with a 200 Hz cut-off) is starting to match up much better. But note that it's not the low frequencies that are making it match up well, but the inclusion of high frequencies. It's not until we include every frequency possible in the short segment, up to 22KHz that we finally get a good representation of the original sine wave.
The reason for all of this is that a small segment of a 27.5 Hz sine wave is not a 27.5 Hz sine wave, and it's DFT doesn't have much to do with 27.5 Hz.
Are you attenuating the value of the DC frequency sample to zero? It appears that you are not attenuating it at all in your example. Since you are implementing a high pass filter, you need to set the DC value to zero as well.
This would explain low frequency distortion. You would have a lot of ripple in the frequency response at low frequencies if that DC value is non-zero because of the large transition.
Here is an example in MATLAB/Octave to demonstrate what might be happening:
N = 32;
os = 4;
Fs = 1000;
X = [ones(1,4) linspace(1,0,8) zeros(1,3) 1 zeros(1,4) linspace(0,1,8) ones(1,4)];
x = ifftshift(ifft(X));
Xos = fft(x, N*os);
f1 = linspace(-Fs/2, Fs/2-Fs/N, N);
f2 = linspace(-Fs/2, Fs/2-Fs/(N*os), N*os);
hold off;
plot(f2, abs(Xos), '-o');
hold on;
grid on;
plot(f1, abs(X), '-ro');
hold off;
xlabel('Frequency (Hz)');
ylabel('Magnitude');
Notice that in my code, I am creating an example of the DC value being non-zero, followed by an abrupt change to zero, and then a ramp up. I then take the IFFT to transform into the time domain. Then I perform a zero-padded fft (which is done automatically by MATLAB when you pass in an fft size bigger than the input signal) on that time-domain signal. The zero-padding in the time-domain results in interpolation in the frequency domain. Using this, we can see how the filter will respond between filter samples.
One of the most important things to remember is that even though you are setting filter response values at given frequencies by attenuating the outputs of the DFT, this guarantees nothing for frequencies occurring between sample points. This means the more abrupt your changes, the more overshoot and oscillation between samples will occur.
Now to answer your question on how this filtering should be done. There are a number of ways, but one of the easiest to implement and understand is the window design method. The problem with your current design is that the transition width is huge. Most of the time, you will want as quick of transitions as possible, with as little ripple as possible.
In the next code, I will create an ideal filter and display the response:
N = 32;
os = 4;
Fs = 1000;
X = [ones(1,8) zeros(1,16) ones(1,8)];
x = ifftshift(ifft(X));
Xos = fft(x, N*os);
f1 = linspace(-Fs/2, Fs/2-Fs/N, N);
f2 = linspace(-Fs/2, Fs/2-Fs/(N*os), N*os);
hold off;
plot(f2, abs(Xos), '-o');
hold on;
grid on;
plot(f1, abs(X), '-ro');
hold off;
xlabel('Frequency (Hz)');
ylabel('Magnitude');
Notice that there is a lot of oscillation caused by the abrupt changes.
The FFT or Discrete Fourier Transform is a sampled version of the Fourier Transform. The Fourier Transform is applied to a signal over the continuous range -infinity to infinity while the DFT is applied over a finite number of samples. This in effect results in a square windowing (truncation) in the time domain when using the DFT since we are only dealing with a finite number of samples. Unfortunately, the DFT of a square wave is a sinc type function (sin(x)/x).
The problem with having sharp transitions in your filter (quick jump from 0 to 1 in one sample) is that this has a very long response in the time domain, which is being truncated by a square window. So to help minimize this problem, we can multiply the time-domain signal by a more gradual window. If we multiply a hanning window by adding the line:
x = x .* hanning(1,N).';
after taking the IFFT, we get this response:
So I would recommend trying to implement the window design method since it is fairly simple (there are better ways, but they get more complicated). Since you are implementing an equalizer, I assume you want to be able to change the attenuations on the fly, so I would suggest calculating and storing the filter in the frequency domain whenever there is a change in parameters, and then you can just apply it to each input audio buffer by taking the fft of the input buffer, multiplying by your frequency domain filter samples, and then performing the ifft to get back to the time domain. This will be a lot more efficient than all of the branching you are doing for each sample.
First, about the normalization: that is a known (non) issue. The DFT/IDFT would require a factor 1/sqrt(N) (apart from the standard cosine/sine factors) in each one (direct an inverse) to make them simmetric and truly invertible. Another possibility is to divide one of them (the direct or the inverse) by N, this is a matter of convenience and taste. Often the FFT routines do not perform this normalization, the user is expected to be aware of it and normalize as he prefers. See
Second: in a (say) 16 point DFT, what you call the bin 0 would correspond to the zero frequency (DC), bin 1 low freq... bin 4 medium freq, bin 8 to the highest frequency and bins 9...15 to the "negative frequencies". In you example, then, bin 1 is actually both the low frequency and medium frequency. Apart from this consideration, there is nothing conceptually wrong in your "equalization". I don't understand what you mean by "the signal gets distorted at low frequencies". How do you observe that ?