I am struggling around with the aggregation pipeline feature from MongoDB.
So far the output for one result looks like this:
{
"type": "inbound",
"sender": "postAG",
"receiver": "maxMusterMan",
"datetime": "20191125",
"info": [
{
"q": "A",
"value": "5",
"name": null,
"plz": 1234
},
{
"q": "B",
"value": "AS",
"name": "ABS",
"plz": null
},
{
"q": "A",
"value": "5",
"name": "aa",
"plz": null
},
... more objects
]
}
The final result should look like:
{
"type": "inbound",
"sender": "postAG",
"receiver": "maxMusterMan",
"datetime": "20191125",
"info": [
{
"q": "A",
"value": "0",
"name": "aa",
"plz": 1234
},
{
"q": "B",
"value": "AS",
"name": "ABS"
}
]
}
So in a nutshell, I want to group the values from the array field info by the "q" field and merge the objects (newer one overwrites the old value).
Further I would like to remove all the values with value "" or null;
There are more fields in the real payload, so I would like to avoid to add a $cond for each field of the object.
Some approaches so far from my side:
for the cleanup, use a UDF, but this is not possible in the pipeline.
use map-reduce for the group and merge, not available in the pipeline.
Please consider that the input file is the output from the several pipeline steps.
So I can not just use map-reduce alone, first I need the pipeline too.
My idea was to create two views, first will do the pipeline stuff and second map-reduce, is this a good solution?
Thx
Andreas
I didn't really understand from your explanation if you can or cannot use map-reduce.
However assuming you can't and you have to 'concat' the pipelines there is no 'generic' workaround for multiple fields - you have to create a condition for each in the pipeline.
With that said here is a working pipeline:
db.collection.aggregate(
[
{
"$unwind" : "$info"
},
{
"$group" : {
"_id" : "$info.q",
"type" : {
"$first" : "$type"
},
"sender" : {
"$first" : "$sender"
},
"receiver" : {
"$first" : "$receiver"
},
"datetime" : {
"$first" : "$datetime"
},
"values" : {
"$push" : "$info.value"
},
"names" : {
"$push" : "$info.name"
},
"plz" : {
"$push" : "$info.plz"
}
}
},
{
"$project" : {
"_id" : 1.0,
"type" : 1.0,
"sender" : 1.0,
"receiver" : 1.0,
"datetime" : 1.0,
"values" : {
"$filter" : {
"input" : "$values",
"as" : "curr",
"cond" : {
"$or" : [
{
"$ne" : [
"$$curr",
null
]
},
{
"$ne" : [
"$$curr",
""
]
}
]
}
}
},
"names" : {
"$filter" : {
"input" : "$names",
"as" : "curr",
"cond" : {
"$or" : [
{
"$ne" : [
"$$curr",
null
]
},
{
"$ne" : [
"$$curr",
""
]
}
]
}
}
},
"plz" : {
"$filter" : {
"input" : "$plz",
"as" : "curr",
"cond" : {
"$or" : [
{
"$ne" : [
"$$curr",
null
]
},
{
"$ne" : [
"$$curr",
""
]
}
]
}
}
}
}
},
{
"$project" : {
"sender" : 1.0,
"receiver" : 1.0,
"datetime" : 1.0,
"type" : 1.0,
"_id" : 1.0,
"value" : {
"$cond" : {
"if" : {
"$gt" : [
{
"$size" : "$values"
},
0.0
]
},
"then" : {
"$arrayElemAt" : [
"$values",
-1.0
]
},
"else" : null
}
},
"name" : {
"$cond" : {
"if" : {
"$gt" : [
{
"$size" : "$names"
},
0.0
]
},
"then" : {
"$arrayElemAt" : [
"$names",
-1.0
]
},
"else" : null
}
},
"plz" : {
"$cond" : {
"if" : {
"$gt" : [
{
"$size" : "$plz"
},
0.0
]
},
"then" : {
"$arrayElemAt" : [
"$plz",
-1.0
]
},
"else" : null
}
}
}
},
{
"$addFields" : {
"infoArray" : [
{
"k" : "type",
"v" : "$_id"
},
{
"k" : "value",
"v" : "$value"
},
{
"k" : "name",
"v" : "$name"
},
{
"k" : "plz",
"v" : "$plz"
}
]
}
},
{
"$addFields" : {
"info" : {
"$arrayToObject" : {
"$filter" : {
"input" : "$infoArray",
"as" : "curr",
"cond" : {
"$ne" : [
"$$curr.v",
null
]
}
}
}
}
}
},
{
"$group" : {
"_id" : null,
"type" : {
"$first" : "$type"
},
"sender" : {
"$first" : "$sender"
},
"receiver" : {
"$first" : "$receiver"
},
"datetime" : {
"$first" : "$datetime"
},
"info" : {
"$push" : "$info"
}
}
}
]
)
Related
i have mongo db collection the follwing structure
{
{
"_id" : ObjectId("63e37afe7a3453d5014c011b"),
"schemaVersion" : NumberInt(1),
"Id" : "ObjectId("63e37afe7a3453d5014c0112")",
"Id1" : "ObjectId("63e37afe7a3453d5014c0113")",
"Id2" : "ObjectId("63e37afe7a3453d5014c0114")",
"collectionName" : "Country",
"List" : [
{
"countryId" : NumberInt(1),
"name" : "Afghanistan",
},{
"countryId" : NumberInt(1),
"name" : "India",
},
{
"countryId" : NumberInt(1),
"name" : "USA",
}
}
i need to match the value with id, id1, id2, collectionName and name in the list to get country id for example if match the below value
"Id" : "ObjectId("63e37afe7a3453d5014c0112")",
"Id1" : "ObjectId("63e37afe7a3453d5014c0113")",
"Id2" : "ObjectId("63e37afe7a3453d5014c0114")",
"collectionName" : "Country",
"name" : "Afghanistan",
i need result
{
"countryId" : 1,
"name" : "Afghanistan",
}
i tried like below
db.country_admin.aggregate([
{ $match: { collectionName: "Country" } },
{ $unwind : '$countryList' },
{ $project : { _id : 0, 'countryList.name' : 1, 'countryList.countryId' : 1 } }
]).pretty()
and i have following output
[
{
"List" : {
"countryId" : 1.0,
"name" : "Afghanistan"
}
},
{
"List" : {
"countryId" : 2.0,
"name" : "india"
}
},
{
"List" : {
"countryId" : 3.0,
"name" : "USA"
}
}]```
You can try using $filter to avoid $unwind like this example:
First $match by your desired condition(s).
Then $filter and get the first element (as "List.name": "Afghanistan" is used into $match stage there will be at least one result).
And output only values you want using $project.
db.collection.aggregate([
{
"$match": {
"Id": ObjectId("63e37afe7a3453d5014c0112"),
"Id1": ObjectId("63e37afe7a3453d5014c0113"),
"Id2": ObjectId("63e37afe7a3453d5014c0114"),
"collectionName": "Country",
"List.name": "Afghanistan",
}
},
{
"$project": {
"country": {
"$arrayElemAt": [
{
"$filter": {
"input": "$List",
"cond": {
"$eq": [
"$$this.name",
"Afghanistan"
]
}
}
},
0
]
}
}
},
{
"$project": {
"_id": 0,
"countryId": "$country.countryId",
"name": "$country.name"
}
}
])
Example here
By the way, using $unwind is also possible and you can check this example
Im trying to create a query that will project or show the field in HORIZONTAL format. Below is my sample collection and the expected output. BTW, Im also using jaspersoft studio to create the report but i think my output should be done in mongodb query. Hope someone can help. Thanks!
"_id" : ObjectId("60ddc6f44c893c117141e9b9"),
"observationvalues" : [
{
"_id" : ObjectId("60ddc6f44c893c117141e9c3"),
"name" : "Systolic BP",
"resultvalue" : "88.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9c2"),
"name" : "Diastolic BP",
"resultvalue" : "66.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9c1"),
"name" : "Weight",
"resultvalue" : "90.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9c5"),
"name" : "Height",
"resultvalue" : null
}
],
"createdat" : ISODate("2021-07-01T13:45:24.679Z"),
"modifiedat" : ISODate("2021-07-01T13:45:24.679Z"),
"statusflag" : "A"
"_id" : ObjectId("60ddc6f44c893c117141e8b8"),
"observationvalues" : [
{
"_id" : ObjectId("60ddc6f44c893c117141e9b3"),
"name" : "Systolic BP",
"resultvalue" : "84.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9b2"),
"name" : "Diastolic BP",
"resultvalue" : "63.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9b1"),
"name" : "Weight",
"resultvalue" : "99.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9b5"),
"name" : "Height",
"resultvalue" : 172.00
}
],
"createdat" : ISODate("2021-07-02T13:45:24.679Z"),
"modifiedat" : ISODate("2021-07-02T13:45:24.679Z"),
"statusflag" : "A"
"_id" : ObjectId("60ddc6f44c893c117141e7b7"),
"observationvalues" : [
{
"_id" : ObjectId("60ddc6f44c893c117141e9a3"),
"name" : "Systolic BP",
"resultvalue" : "81.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9a2"),
"name" : "Diastolic BP",
"resultvalue" : "65.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9a1"),
"name" : "Weight",
"resultvalue" : "96.00"
},
{
"_id" : ObjectId("60ddc6f44c893c117141e9a5"),
"name" : "Height",
"resultvalue" : 165.00
}
],
"createdat" : ISODate("2021-07-03T13:45:24.679Z"),
"modifiedat" : ISODate("2021-07-03T13:45:24.679Z"),
"statusflag" : "A",
The expected Output will be:
{"createdat" : "2021-07-01T13:45:24.679Z", "Systolic BP" : 88.00 ,"Diastolic BP" : 66.00 ,"Weight": 90.00 ,"Height":null }
{"createdat" : "2021-07-01T13:45:24.679Z", "Systolic BP" : 84.00 ,"Diastolic BP" : 63.00 ,"Weight": 99.00 ,"Height":172.00 }
{"createdat" : "2021-07-03T13:45:24.679Z", "Systolic BP" : 81.00 ,"Diastolic BP" : 65.00 ,"Weight": 96.00 ,"Height":165.00 }
I have created my query but it is not having the output in one line grouped for each createdat field
{
$project : {
_id: {
"systolic": {"$cond": [ { "$eq": ["$name","Systolic BP" ] }, "$resultvalue","" ] },
"diastolic": {"$cond": [ { "$eq": ["$name","Diastolic BP" ] }, "$resultvalue","" ] },
"weight": {"$cond": [ { "$eq": ["$name","Weight" ] }, "$resultvalue","" ] },
"height": {"$cond": [ { "$eq": ["$name","Height" ] }, "$resultvalue","" ] },
"create": "$createdat"
}
}
},
Your expected data output could be done like this: playground
[
{
"$project": {
"createdat": 1,
"rows": {
"$arrayToObject": {
"$map": {
"input": "$observationvalues",
"in": {
"k": "$$this.name",
"v": {
"$convert": {
"input": "$$this.resultvalue",
"to": "double",
"onError": null,
"onNull": null
}
}
}
}
}
}
}
},
{
"$addFields": {
"rows.create": "$createdat"
}
},
{
"$replaceRoot": {
"newRoot": "$rows"
}
},
{
"$match": {
"Systolic BP": 84.00
}
}
]
To get them in one line you should look for some JSON formater.
Suppose we have these two documents:
{
"_id" : ObjectId("5f3cdd1d0fefeba343ff3093"),
"country" : "C1",
"time" : "1994",
"value" : NumberInt(100),
"type" : "type1",
"origin" : "O1"
}
{
"_id" : ObjectId("5f3cdd1d0fefeba343ff3094"),
"country" : "C1",
"time" : "1994",
"value" : NumberInt(200),
"type" : "type1",
"origin" : "O2"
}
I want to retrieve the aggregation with the origin array indexed by strings (the value of "type"); expected output:
{
"_id" : {
"country" : "C1",
"time" : "1994"
},
"TOT" : NumberInt(300),
"count" : 2.0,
"origin" : [
"O1": NumberInt(100),
"O2": NumberInt(200)
]
}
Here we have the type of the "origin" array as {[key: string]: number}.
With the following query, the origin array is instead indexed by numbers:
use local;
db.getCollection("test_collection").aggregate(
[
{
"$match" : {
"type" : {
"$in" : [
"type1"
]
}
}
},
{
"$group" : {
"_id" : {
"country" : "$country",
"time" : "$time"
},
"TOT" : {
"$sum" : "$value"
},
"count" : {
"$sum" : 1.0
},
"origin" : {
"$addToSet" : "$value"
}
}
}
],
{
"allowDiskUse" : false
}
);
You can try $arrayToObject after adding in origin,
use local;
db.getCollection("test_collection").aggregate([
{ "$match": { "type": { "$in": ["type1"] } } },
{
"$group": {
"_id": {
"country": "$country",
"time": "$time"
},
"TOT": { "$sum": "$value" },
"count": { "$sum": 1.0 },
// add object like this
"origin": {
"$addToSet": {
k: "$origin",
v: "$value"
}
}
}
},
// add this
{ $addFields: { origin: { $arrayToObject: "$origin" } } }
],
{ "allowDiskUse": false }
)
Playground
this is my data :
> db.bookmarks.find({"userId" : "56b9b74bf976ab70ff6b9999"}).pretty()
{
"_id" : ObjectId("56c2210fee4a33579f4202dd"),
"userId" : "56b9b74bf976ab70ff6b9999",
"items" : [
{
"itemId" : "28",
"timestamp" : "2016-02-12T18:07:28Z"
},
{
"itemId" : "29",
"timestamp" : "2016-02-12T18:07:29Z"
},
{
"itemId" : "30",
"timestamp" : "2016-02-12T18:07:30Z"
},
{
"itemId" : "31",
"timestamp" : "2016-02-12T18:07:31Z"
},
{
"itemId" : "32",
"timestamp" : "2016-02-12T18:07:32Z"
},
{
"itemId" : "33",
"timestamp" : "2016-02-12T18:07:33Z"
},
{
"itemId" : "34",
"timestamp" : "2016-02-12T18:07:34Z"
}
]
}
I want to have something like (actually i hope the _id can become userId too) :
{
"_id" : "56b9b74bf976ab70ff6b9999",
"items" : [
{ "itemId": "32", "timestamp": "2016-02-12T18:07:32Z" },
{ "itemId": "31", "timestamp": "2016-02-12T18:07:31Z" },
{ "itemId": "30", "timestamp": "2016-02-12T18:07:30Z" }
]
}
What I have now :
> db.bookmarks.aggregate(
... { $match: { "userId" : "56b9b74bf976ab70ff6b9999" } },
... { $unwind: '$items' },
... { $sort: { 'items.timestamp': -1} },
... { $skip: 2 },
... { $limit: 3},
... { $group: { '_id': '$userId' , items: { $push: '$items.itemId' } } }
... ).pretty()
{ "_id" : "56b9b74bf976ab70ff6b9999", "items" : [ "32", "31", "30" ] }
i tried to read the document in mongo and find out i can $push, but somehow i cannot find a way to push such object, which is not defined anywhere in the whole object. I want to have the timestamp also.. but i don't know how should i modified the $group (or others??) to do so. thanks for helping!
This code, which I tested in the MongoDB 3.2.1 shell, should give you the output format that you want:
> db.bookmarks.aggregate(
{ "$match" : { "userId" : "Ursula" } },
{ "$unwind" : "$items" },
{ "$sort" : { "items.timestamp" : -1 } },
{ "$skip" : 2 },
{ "$limit" : 3 },
{ "$group" : { "_id" : "$userId", items: { "$push" : { "myPlace" : "$items.itemId", "myStamp" : "$items.timestamp" } } } } ).pretty()
Running the above will produce this output:
{
"_id" : "Ursula",
"items" : [
{
"myPlace" : "52",
"myStamp" : ISODate("2016-02-13T18:07:32Z")
},
{
"myPlace" : "51",
"myStamp" : ISODate("2016-02-13T18:07:31Z")
},
{
"myPlace" : "50",
"myStamp" : ISODate("2016-02-13T18:07:30Z")
}
]
}
In MongoDB version 3.2.x, you can also use the $out operator in the very last stage of the aggregation pipeline, and have the output of the aggregation query written to a collection. Here is the code I used:
> db.bookmarks.aggregate(
{ "$match" : { "userId" : "Ursula" } },
{ "$unwind" : "$items" },
{ "$sort" : { "items.timestamp" : -1 } },
{ "$skip" : 2 },
{ "$limit" : 3 },
{ "$group" : { "_id" : "$userId", items: { "$push" : { "myPlace" : "$items.itemId", "myStamp" : "$items.timestamp" } } } },
{ "$out" : "ursula" } )
This gives me a collection named "ursula":
> show collections
ursula
and I can query that collection:
> db.ursula.find().pretty()
{
"_id" : "Ursula",
"items" : [
{
"myPlace" : "52",
"myStamp" : ISODate("2016-02-13T18:07:32Z")
},
{
"myPlace" : "51",
"myStamp" : ISODate("2016-02-13T18:07:31Z")
},
{
"myPlace" : "50",
"myStamp" : ISODate("2016-02-13T18:07:30Z")
}
]
}
>
Last of all, this is the input document I used in the aggregation query. You can compare this document to how I coded the aggregation query to see how I built the new items array.
> db.bookmarks.find( { "userId" : "Ursula" } ).pretty()
{
"_id" : ObjectId("56c240ed55f2f6004dc3b25c"),
"userId" : "Ursula",
"items" : [
{
"itemId" : "48",
"timestamp" : ISODate("2016-02-13T18:07:28Z")
},
{
"itemId" : "49",
"timestamp" : ISODate("2016-02-13T18:07:29Z")
},
{
"itemId" : "50",
"timestamp" : ISODate("2016-02-13T18:07:30Z")
},
{
"itemId" : "51",
"timestamp" : ISODate("2016-02-13T18:07:31Z")
},
{
"itemId" : "52",
"timestamp" : ISODate("2016-02-13T18:07:32Z")
},
{
"itemId" : "53",
"timestamp" : ISODate("2016-02-13T18:07:33Z")
},
{
"itemId" : "54",
"timestamp" : ISODate("2016-02-13T18:07:34Z")
}
]
}
i have a document like this :
{
"ExtraFields" : [
{
"value" : "print",
"fieldID" : ObjectId("5535627631efa0843554b0ea")
},
{
"value" : "14",
"fieldID" : ObjectId("5535627631efa0843554b0eb")
},
{
"value" : "POLYE",
"fieldID" : ObjectId("5535627631efa0843554b0ec")
},
{
"value" : "30",
"fieldID" : ObjectId("5535627631efa0843554b0ed")
},
{
"value" : "0",
"fieldID" : ObjectId("5535627631efa0843554b0ee")
},
{
"value" : "0",
"fieldID" : ObjectId("5535627731efa0843554b0ef")
},
{
"value" : "0",
"fieldID" : ObjectId("5535627831efa0843554b0f0")
},
{
"value" : "42",
"fieldID" : ObjectId("5535627831efa0843554b0f1")
},
{
"value" : "30",
"fieldID" : ObjectId("5535627831efa0843554b0f2")
},
{
"value" : "14",
"fieldID" : ObjectId("5535627831efa0843554b0f3")
},
{
"value" : "19",
"fieldID" : ObjectId("5535627831efa0843554b0f4")
}
],
"id" : ObjectId("55369e60733e4914550832d0"), "title" : "A product"
}
what i want is to match one or more sets from the ExtraFields array. For example, all the products that contain the values print and 30. Since a value may be found in more than one fieldID (like 0 or true) we need to create a set like
WHERE (fieldID : ObjectId("5535627631efa0843554b0ea"), value : "print")
Where i'm having problems is when querying more than one fields. The pipeline i came up with is :
db.products.aggregate([
{'$unwind': '$ExtraFields'},
{
'$match': {
'$and': [{
'$and': [{'ExtraFields.value': {'$in': ["A52A2A"]}}, {
'ExtraFields.fieldID': ObjectId("5535627631efa0843554b0ea")
}]
}
,
{
'$and': [{'ExtraFields.value': '14'}, {'ExtraFields.fieldID': ObjectId("5535627631efa0843554b0eb")}]
}
]
}
},
]);
This returns zero results, but this is what i want to do in theory. Match all items that contain set 1 AND all that contain set 2.
The end result should look like a faceted search output :
[
{
"_id" : {
"values" : "18",
"fieldID" : ObjectId("5535627831efa0843554b0f3")
},
"count" : 2
},
{
"_id" : {
"values" : "33",
"fieldID" : ObjectId("5535627831efa0843554b0f2")
},
"count" : 1
}
]
Any ideas?
You could try the following aggregation pipeline
db.products.aggregate([
{
"$match": {
"ExtraFields.value": { "$in": ["A52A2A", "14"] },
"ExtraFields.fieldID": {
"$in": [
ObjectId("5535627631efa0843554b0ea"),
ObjectId("5535627631efa0843554b0eb")
]
}
}
},
{
"$unwind": "$ExtraFields"
},
{
"$match": {
"ExtraFields.value": { "$in": ["A52A2A", "14"] },
"ExtraFields.fieldID": {
"$in": [
ObjectId("5535627631efa0843554b0ea"),
ObjectId("5535627631efa0843554b0eb")
]
}
}
},
{
"$group": {
"_id": {
"value": "$ExtraFields.value",
"fieldID": "$ExtraFields.fieldID"
},
"count": {
"$sum": 1
}
}
}
])
With the sample document provided, this gives the output:
/* 1 */
{
"result" : [
{
"_id" : {
"value" : "14",
"fieldID" : ObjectId("5535627631efa0843554b0eb")
},
"count" : 1
}
],
"ok" : 1
}