What is the smartest way to detect curves in a 2d dataset? There must be a way to cluster data points by defining maximum distance to neighbor. My goal is to apply polyfit function over each curve and use this template for alike datasets.
Example of data:
array([[ 0., 0., 0., ..., 2020., 2020., 2020.],
[ 51., 76., 194., ..., 1862., 1915., 2021.]])
Figured out this can be done with Agglomerative Clustering, here's the code and result:
from sklearn.cluster import AgglomerativeClustering
#Reshape data
a = array[:, 0].flatten()
b = array[:, 1].flatten()
array_new = np.matrix([a,b])
array_new = np.squeeze(np.asarray(array_new))
array_new1 = array_new.T
#Clustering algorithm
n_clusters = None
model = AgglomerativeClustering(n_clusters=n_clusters,
affinity='euclidean',
linkage='single',
compute_full_tree=True,
distance_threshold=15)
model.fit(array_new1)
labels = model.labels_
n_clusters = len(list(set(labels)))
print(n_clusters)
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, n_clusters)]
plt.figure(figsize=(15,15))
for i, color in enumerate(colors, start=1):
plt.scatter(array_new1[labels==i,0], array_new1[labels==i,1], color=color)
plt.gca().invert_yaxis()
plt.show()
![](https://i.stack.imgur.com/utwqP.png)
#plotting result
data = pd.DataFrame({'x' : array_new1[:,0],
'y' : array_new1[:,1],
'label' : labels})
data.sort_values(by='label')
counter = 0
plt.figure(figsize=(15,15))
plt.scatter(5*array[:, 0], array[:, 1])
for i in range(n_clusters):
if len(data.loc[data['label'] == i].iloc[:,0]) > 50 \
and len(data.loc[data['label'] == i].iloc[:,0]) < 1000:
counter += 1
z = np.polyfit(data.loc[data['label'] == i].iloc[:,0],
data.loc[data['label'] == i].iloc[:,1],
2)
p = np.poly1d(z)
xp = np.linspace(0, tasku_sk, 50)
#plt.scatter(data.loc[data['label'] == i].iloc[:,0],
# data.loc[data['label'] == i].iloc[:,1])
plt.plot(5*xp, p(xp), c='r', lw=4)
plt.gca().invert_yaxis()
plt.show()
print(counter)
![](https://i.stack.imgur.com/AQHOf.png)
22
Yes.
The supposedly oldest of all clustering algorithms: single-link.
Related
I have a directed graph in networkx.
The nodes have a "height" label. Here is an example with heights 0, 1, 2, 3, 4, 5 and 6:
I would like to run spring layout (in two dimensions), but constrain the nodes to be of a fixed height. That is, I want to "constrain" spring layout so that the x coordinate of the nodes moves, by the y coordinate does not.
I am relatively new to networkx. What is the best way to accomplish this? Thanks in advance.
Following #Joe's request, I'm posting answer here.
This was just a matter of patching the code suggested above together. Thus absolutely no originality is claimed.
Your graph should have a "height" variable attached to each node. Thus, once you have added the code below, the following should work:
G = nx.Graph()
G.add_edges_from([[0,1],[1,2],[2,3]])
for g in G.nodes():
G.nodes()[g]["height"] = g
draw_graph_with_height(G,figsize=(5,5))
# Copyright (C) 2004-2015 by
# Aric Hagberg <hagberg#lanl.gov>
# Dan Schult <dschult#colgate.edu>
# Pieter Swart <swart#lanl.gov>
# All rights reserved.
# BSD license.
# import numpy as np
# taken from networkx.drawing.layout and added hold_dim
def _fruchterman_reingold(A, dim=2, k=None, pos=None, fixed=None,
iterations=50, hold_dim=None):
# Position nodes in adjacency matrix A using Fruchterman-Reingold
# Entry point for NetworkX graph is fruchterman_reingold_layout()
try:
nnodes, _ = A.shape
except AttributeError:
raise RuntimeError(
"fruchterman_reingold() takes an adjacency matrix as input")
A = np.asarray(A) # make sure we have an array instead of a matrix
if pos is None:
# random initial positions
pos = np.asarray(np.random.random((nnodes, dim)), dtype=A.dtype)
else:
# make sure positions are of same type as matrix
pos = pos.astype(A.dtype)
# optimal distance between nodes
if k is None:
k = np.sqrt(1.0 / nnodes)
# the initial "temperature" is about .1 of domain area (=1x1)
# this is the largest step allowed in the dynamics.
t = 0.1
# simple cooling scheme.
# linearly step down by dt on each iteration so last iteration is size dt.
dt = t / float(iterations + 1)
delta = np.zeros((pos.shape[0], pos.shape[0], pos.shape[1]), dtype=A.dtype)
# the inscrutable (but fast) version
# this is still O(V^2)
# could use multilevel methods to speed this up significantly
for _ in range(iterations):
# matrix of difference between points
for i in range(pos.shape[1]):
delta[:, :, i] = pos[:, i, None] - pos[:, i]
# distance between points
distance = np.sqrt((delta**2).sum(axis=-1))
# enforce minimum distance of 0.01
distance = np.where(distance < 0.01, 0.01, distance)
# displacement "force"
displacement = np.transpose(np.transpose(delta)*(k * k / distance**2 - A * distance / k))\
.sum(axis=1)
# update positions
length = np.sqrt((displacement**2).sum(axis=1))
length = np.where(length < 0.01, 0.1, length)
delta_pos = np.transpose(np.transpose(displacement) * t / length)
if fixed is not None:
# don't change positions of fixed nodes
delta_pos[fixed] = 0.0
# only update y component
if hold_dim == 0:
pos[:, 1] += delta_pos[:, 1]
# only update x component
elif hold_dim == 1:
pos[:, 0] += delta_pos[:, 0]
else:
pos += delta_pos
# cool temperature
t -= dt
pos = _rescale_layout(pos)
return pos
def _rescale_layout(pos, scale=1):
# rescale to (0,pscale) in all axes
# shift origin to (0,0)
lim = 0 # max coordinate for all axes
for i in range(pos.shape[1]):
pos[:, i] -= pos[:, i].min()
lim = max(pos[:, i].max(), lim)
# rescale to (0,scale) in all directions, preserves aspect
for i in range(pos.shape[1]):
pos[:, i] *= scale / lim
return pos
def draw_graph_with_height(g,highlighted_nodes=set([]),figsize=(15,15),iterations=150,title=''):
""" Try to draw a reasonable picture of a graph with a height feature on each node."""
pos = { p : (5*np.random.random(),2*data["height"]) for (p,data) in g.nodes(data=True)} # random x, height fixed y.
pos_indices = [i for i in pos.keys()]
pos_flat = np.asarray([pos[i] for i in pos.keys()])
A = nx.adjacency_matrix(g.to_undirected())
Adense = A.todense()
Adensefloat = Adense.astype(float)
new_pos = _fruchterman_reingold(Adensefloat, dim=2, pos=pos_flat, fixed=[0,len(pos_flat)-1], iterations=iterations, hold_dim=1)
pos_dict = { pos_indices[i] : tuple(new_pos[i]) for i in range(len(pos_indices))}
# for u,v,d in g.edges(data=True):
# d['weight'] = float(d['t'][1]-d['t'][0])
# edges,weights = zip(*nx.get_edge_attributes(g,'weight').items())
# print(weights)
fig, ax = plt.subplots(figsize=figsize)
if title: fig.suptitle(title, fontsize=16)
if highlighted_nodes:
nx.draw(g, pos=pos_dict, alpha=.1, font_size=14,node_color='b')
gsub = nx.subgraph(g,highlighted_nodes)
nx.draw(gsub, pos=pos_dict, node_color='r')
else:
nx.draw(g,pos=pos_dict)
plt.show()
import numpy as np
from vispy import app, scene
from vispy.visuals import transforms
canvas = scene.SceneCanvas(keys='interactive', show=True)
vb = canvas.central_widget.add_view()
vb.camera = 'turntable'
vb.camera.rect = (-10, -10, 20, 20)
box = scene.visuals.Box(width=1, height=2, depth=3, color=(0, 0, 1, 0.3),
edge_color='green')
vb.add(box)
# Define a scale and translate transformation :
box.transform = transforms.STTransform(translate=(0., 0., 0.),
scale=(1., 1., 1.))
#canvas.events.key_press.connect
def on_key_press(ev):
tr = np.array(box.transform.translate)
sc = np.array(box.transform.scale)
if ev.text in '+':
tr[0] += .1
elif ev.text == '-':
tr[0] -= .1
elif ev.text == '(':
sc[0] += .1
elif ev.text == ')':
sc[0] -= .1
box.transform.translate = tr
box.transform.scale = sc
print('Translate (x, y, z): ', list(tr),
'\nScale (x, y, z): ', list(sc), '\n')
if __name__ == '__main__':
import sys
if sys.flags.interactive != 1:
app.run()
In the above code if I add a MatrixTransform, and rotate the cube and then apply scaling, the cube becomes a Rhombus
What I would like to achieve is to rotate the cube in a canvas and scale it only in X direction, without other dimensions getting affected
I think we covered this in a vispy repository bug report. The solution was to swap the order of the matrix transform and st transform in your multiplication. If this is still an issue, could you provide your code when you are using the matrix and we'll continue debugging this. Thanks.
I need to draw a smooth curve through some points, which I then want to show as an SVG path. So I create a B-Spline with scipy.interpolate, and can access some arrays that I suppose fully define it. Does someone know a reasonably simple way to create Bezier curves from these arrays?
import numpy as np
from scipy import interpolate
x = np.array([-1, 0, 2])
y = np.array([ 0, 2, 0])
x = np.r_[x, x[0]]
y = np.r_[y, y[0]]
tck, u = interpolate.splprep([x, y], s=0, per=True)
cx = tck[1][0]
cy = tck[1][1]
print( 'knots: ', list(tck[0]) )
print( 'coefficients x: ', list(cx) )
print( 'coefficients y: ', list(cy) )
print( 'degree: ', tck[2] )
print( 'parameter: ', list(u) )
The red points are the 3 initial points in x and y. The green points are the 6 coefficients in cx and cy. (Their values repeat after the 3rd, so each green point has two green index numbers.)
Return values tck and u are described scipy.interpolate.splprep documentation
knots: [-1.0, -0.722, -0.372, 0.0, 0.277, 0.627, 1.0, 1.277, 1.627, 2.0]
# 0 1 2 3 4 5
coefficients x: [ 3.719, -2.137, -0.053, 3.719, -2.137, -0.053]
coefficients y: [-0.752, -0.930, 3.336, -0.752, -0.930, 3.336]
degree: 3
parameter: [0.0, 0.277, 0.627, 1.0]
Not sure starting with a B-Spline makes sense: form a catmull-rom curve through the points (with the virtual "before first" and "after last" overlaid on real points) and then convert that to a bezier curve using a relatively trivial transform? E.g. given your points p0, p1, and p2, the first segment would be a catmull-rom curve {p2,p0,p1,p2} for the segment p1--p2, {p0,p1,p2,p0} will yield p2--p0, and {p1, p2, p0, p1} will yield p0--p1. Then you trivially convert those and now you have your SVG path.
As demonstrator, hit up https://editor.p5js.org/ and paste in the following code:
var points = [{x:150, y:100 },{x:50, y:300 },{x:300, y:300 }];
// add virtual points:
points = points.concat(points);
function setup() {
createCanvas(400, 400);
tension = createSlider(1, 200, 100);
}
function draw() {
background(220);
points.forEach(p => ellipse(p.x, p.y, 4));
for (let n=0; n<3; n++) {
let [c1, c2, c3, c4] = points.slice(n,n+4);
let t = 0.06 * tension.value();
bezier(
// on-curve start point
c2.x, c2.y,
// control point 1
c2.x + (c3.x - c1.x)/t,
c2.y + (c3.y - c1.y)/t,
// control point 2
c3.x - (c4.x - c2.x)/t,
c3.y - (c4.y - c2.y)/t,
// on-curve end point
c3.x, c3.y
);
}
}
Which will look like this:
Converting that to Python code should be an almost effortless exercise: there is barely any code for us to write =)
And, of course, now you're left with creating the SVG path, but that's hardly an issue: you know all the Bezier points now, so just start building your <path d=...> string while you iterate.
A B-spline curve is just a collection of Bezier curves joined together. Therefore, it is certainly possible to convert it back to multiple Bezier curves without any loss of shape fidelity. The algorithm involved is called "knot insertion" and there are different ways to do this with the two most famous algorithm being Boehm's algorithm and Oslo algorithm. You can refer this link for more details.
Here is an almost direct answer to your question (but for the non-periodic case):
import aggdraw
import numpy as np
import scipy.interpolate as si
from PIL import Image
# from https://stackoverflow.com/a/35007804/2849934
def scipy_bspline(cv, degree=3):
""" cv: Array of control vertices
degree: Curve degree
"""
count = cv.shape[0]
degree = np.clip(degree, 1, count-1)
kv = np.clip(np.arange(count+degree+1)-degree, 0, count-degree)
max_param = count - (degree * (1-periodic))
spline = si.BSpline(kv, cv, degree)
return spline, max_param
# based on https://math.stackexchange.com/a/421572/396192
def bspline_to_bezier(cv):
cv_len = cv.shape[0]
assert cv_len >= 4, "Provide at least 4 control vertices"
spline, max_param = scipy_bspline(cv, degree=3)
for i in range(1, max_param):
spline = si.insert(i, spline, 2)
return spline.c[:3 * max_param + 1]
def draw_bezier(d, bezier):
path = aggdraw.Path()
path.moveto(*bezier[0])
for i in range(1, len(bezier) - 1, 3):
v1, v2, v = bezier[i:i+3]
path.curveto(*v1, *v2, *v)
d.path(path, aggdraw.Pen("black", 2))
cv = np.array([[ 40., 148.], [ 40., 48.],
[244., 24.], [160., 120.],
[240., 144.], [210., 260.],
[110., 250.]])
im = Image.fromarray(np.ones((400, 400, 3), dtype=np.uint8) * 255)
bezier = bspline_to_bezier(cv)
d = aggdraw.Draw(im)
draw_bezier(d, bezier)
d.flush()
# show/save im
I didn't look much into the periodic case, but hopefully it's not too difficult.
I have a vector shapefile which is in unit of 'Meter' presenting boundary of overall Germany. I am converting it into raster format based on each pixel representing 300 Meters respectively. After conversion I accessed inmage information using imfinfo() in matlab. However the result is giving me the unit value is in "Inches" I am quite confused at the moment and do not know what to do to convert inches to meters as a pixel size unit. Would you please give me some idea?
`% Code
R6 = shaperead('B6c.shp');
%Nord
XN6 = double(R6(4).X); YN6 = double(R6(4).Y);
XN6min = min(XN6(XN6>0)); XNmax = max(XN6);
YN6min = min(YN6(YN6>0)); YNmax = max(YN6);
%Bayern
XB6 = double(R6(7).X); YB6 = double(R6(7).Y);
XB6min = min(XB6(XB6>0)); XB6max = max(XB6);
YB6min = min(YB6(YB6>0)); YB6max = max(YB6);
%Schleswig-Holstein
XSH6 = double(R6(9).X); YSH6 = double(R6(9).Y);
XSH6min = min(XSH6(XSH6>0)); XSH6max = max(XSH6);
YSH6min = min(YSH6(YSH6>0)); YSH6max = max(YSH6);
%Sachsen
XS6 = double(R6(6).X); YS6 = double(R6(6).Y);
XS6min = min(XS6(XS6>0)); XS6max = max(XS6);
YS6min = min(YS6(YS6>0)); YS6max = max(YS6);
dx = round(XS6max-XN6min);
dy = round(YSH6max-YB6min);
M = round((dx)/300);enter code here N = round((dy)/300);
A6 = zeros(M,N); %initiating image matrix based on 4 limiting States
%transformation from world to pixel coordinates
xpix_bw =(((XBW-XN6min)*M)/dx)';
ypix_bw =(((YBW-YB6min)*N)/dy)';
xbw6=round(xpix_bw); xbw6=xbw6(~isnan(xbw6));
ybw6=round(ypix_bw); ybw6=ybw6(~isnan(ybw6));
%line drawing
for i=1:1:length(xbw6)-1
j=i+1;
x1=xbw6(i); x2=xbw6(j); y1=ybw6(i); y2=ybw6(j);
nn=atan2((y2-y1),(x2-x1)); % azimuthal angle
if x2==x1
l=abs(y2-y1);
else
l = round((x2-x1)/cos(nn)); % horizontal distance
end
xx=zeros(l,1); %empty column
yy=zeros(l,1); %empty column
% creating line along slope distance
for i=1:1:l
xx(i)=round(x1+cos(nn)*i);
yy(i)=round(y1+sin(nn)*i);
A6(xx(i)+1,yy(i)+1) = 256;
end
end
imwrite(A6, 'Untitled_0506_300.tif','Resolution', 300);`
I have a circle of radius 10 m. I want to count the number of vehicles entering the circle it (the distance from the center car <= 10m)
I'm right . I can use the toolbar "Minitor" to count the number of vehicles currently in liquidation xe.nhung "minitor" much larger than the actual number of vehicles that pass through the circle. I attached the "minitor" by "total-cars".
how to properly count the number of vehicles?
ask cars
[
if distancexy 0 0 < 10
[
set total-cars (total-cars + 1)
]
]
I am not very sure about your question, but maybe this code could help you:
set total-cars count cars with [distancexy 0 0 <= 10]
You can use the following code in the monitor control directly:
count cars with [distancexy 0 0 <= 10]
import cv2
import time
bgsMOG = cv2.createBackgroundSubtractorMOG2(detectShadows=False)
kernal=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
cap = cv2.VideoCapture(0)
counter =0
time.sleep(2)
if cap:
while True:
ret, frame = cap.read()
if ret:
#fgmask = bgsMOG.apply(frame, None, 0.01)
blur = cv2.GaussianBlur(frame, (5, 5), 0)
fgmask = bgsMOG.apply(blur)
morhpho = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernal)
#line for detection
cv2.line(frame,(20,270),(320,270),(175,175,0),5)
_,contours, hierarchy = cv2.findContours(morhpho,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
ax1=20 #coordinate of line where vehicle will be count if intersect
ay1=270
ax2=320
ay2=270
try: hierarchy = hierarchy[0]
except: hierarchy = []
#for contour, hier in zip(contours, hierarchy):
for (i, contour) in enumerate(contours):
(x,y,w,h) = cv2.boundingRect(contour)
if w > 20 and h > 25:
rec=cv2.rectangle(frame, (x,y), (x+w,y+h), (180, 0, 0), 1)
x1=w/2 #to find centroid
y1=h/2
cx=x+x1
cy=y+y1
centroid=(cx,cy)
M = cv2.moments(contour)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# draw the contour and center of the shape on the image
cv2.circle(frame, (cX, cY), 2, (255, 255, 255), -1)
cv2.circle(frame,(int(cx),int(cy)),1,(0,255,0),-1)
dy=cY-270 #my first code to increase counter
print("centroid",cX,":",cY)
if dy==0:
if (cX<=320)and(cX>=20):
counter=counter+1
print("1st ct",counter)
print len(contour)
#FileName = "D:/data/" + str(y) + ".jpg"
#cv2.imshow("cropped",rec)
#cv2.imwrite(FileName,rec)
if cy==270:
if centroid > (27, 268) and centroid < (325, 285):
if (cX <= 320) and (cX >= 20):
counter =counter+1
print "counter=", counter
if cY > 10 and cY < 250:
cv2.putText(frame, str(counter),(10,150),cv2.FONT_HERSHEY_SIMPLEX,2, (255, 0, 0), 1, True)
#cv2.resizeWindow('Output',320,180)
cv2.imshow('Output', frame)
cv2.imshow('mor', morhpho)
cv2.imshow('blur', blur)
#cv2.imshow('FGMASK', morhpho)
key = cv2.waitKey(1)
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()