Very simple macOS XPC - swift

I want to use the XPC technology simply to launch an app. I do not need any interprocess communication, or any of the other feature of XPC.
The only documents that I can find on the internet show a complex structure, with code for the XPC service, separate code to launch the XPC service via a script, and app code to communicate with the service.
In other words, I only want something that does the equivalent of this:
NSWorkspace.shared.openApplication(at: path,
configuration: configuration,
completionHandler: nil)
but with XPC. So I would need something along the lines of:
let listener = NSXPCListener.service("/path/to/my_app.app")
listener.resume()
RunLoop.main.run()
Obviously, the service method does not take an argument that would be an executable path, so this does not work.
How can I do that ?
PS: to explain the motivation, launching an XPC service will preserve sandbox restriction form the launching app, whereas launching the app directly via NSWorkspace.shared.openApplication will not preserve sandbox restrictions (because the spawned app does not have "com.apple.security.inherit" as entitlement).

It does not seem possible to launch a sub process while altering it's sandbox (i.e. giving it more or less entitlements than it was originally blessed with).
I recommend stripping the sandboxing from the existing application, modifying the entitlements appropriately and then re-signing it. It's not a regular approach but would solve your specific issue.

Related

macOS : programmatic check if process runs as a launchDaemon or launchAgent or from command-line

I'd like to get an indication about the context in which my process is running from. I'd like to distinguish between the following cases :
It runs as a persistent scheduled task (launchDaemon/launchAgent)
It was called on-demand and created by launchd using open command-line or double-click.
It was called directly from command-line terminal (i.e. > /bin/myProg from terminal )
Perhaps is there any indication about the process context using Objective-c/swift framework or any other way ? I wish to avoid inventing the wheel here :-)
thanks
There is definetely no simple public API or framework for doing this, and doing this is hard.
Some parts of this info possibly could be retreived by your process itslef with some side-ways which will work on some system versions:
There is a launchctl C-based API, which you can try to use to enumerate all
launch daemon/agent tasks and search for your app path/pid. You may
require a root rights for your process for doing this.
Using open command-line sometimes could be traced with environment
variables it sets for your process.
Running directly from command-line could leave responsible_pid filled correctly (which is private API from libquarantine, unless you are observing it with Endpoint Security starting from 11.smth version)
All this things, except launchctl API, are not public, not reliable, could be broken at any time by Apple, and may be not sufficient for your needs.
But it is worth to take them a try, because there is nothing better :)
You could potentially distinguish all cases you want using system events monitoring from some other (root-permitted) process you control, possibly adopting Endpoint Security Framework (requires an entitlement from Apple, can't be distributed via AppStore), calling a lot of private APIs and a doing bunch of reversing tricks.
The open resource I could suggest on this topic is here

CLLocationManager and unit testing

I have been trying to add some (logic) unit tests to my code recently. I've set up the tests with Kiwi, I like the BDD style and the syntax.
My problem now is that I'm trying to test some code that relies on CLLocationManager sending a correct locationManager:didUpdateToLocation:fromLocation:. However, this never happens when I run the test, presumably because CLLocationManager thinks it's not authorised. For the record, I have added a .gpx file to the test target and edited the scheme to use that file as the location (under Edit Scheme... -> Test -> Info). The same code works fine when I run the full app in the simulator. Any idea how I can get (simulated) location updates to be sent in a test case?
Use dependency injection to specify the location manager you'd like to use. You can either:
Specify it as an argument to the initializer (constructor injection)
Set it as a property (setter injection)
Try to use constructor injection if you can.
Then for real use, pass in a real CLLocationManager. But for test use, provide a fake that you can trigger to send the desired method, with preset test arguments. This also makes your test deterministic by removing any reference to your actual location.
I ended up going down a different way: I converted my logic test to an application test, so that the test actually runs alongside the app in the simulator. This has the definitive advantage that I don't have to jump through hoops to get [NSBundle mainBundle] and CLLocationManager to work exactly like in the app. I'd have preferred the conceptual cleanliness of a separate logic test, but I don't think it makes sense to rewrite code just for that.

Why use the Bundle when you can just use the Application?

I'm reading this article on how to : correctly retain variable state in Android and I'm reminded that I've never gotten a good answer (and can't find one here) for why it's better to tussle with the Bundle (which isn't a HUGE hassle, but definitely has its limitations) rather than just always have an Application overridden in your App, and just store all your persistent data members there. Is there some leakage risk? Is there a way that the memory can be released unexpectedly? I'm just not clear on this... it SEEMS like it's a totally reliable "attic" to all the Activities, and is the perfect place to store anything that you're worried might be reset when the user turns the device or suspends the app.
Am I wrong on this? Would love to get some clarity on what the true life cycle of the memory is in the Application.
Based on the answers below, let me extend my question.
Suppose I have an app that behaves differently based on an XML file that it loads at startup.
Specifically, the app is a user-info gathering app, and depending on the XML settings it will follow an open ended variety of paths (collecting info A, but not J, and offering Survey P, followed by an optional PhotoTaking opportunity etc.)
Ideally I don't have to store the details of this behavior path in a Bundle (god forbid) or a database (also ugly, but less so). I would load the XML, process it, and have the Application hold onto that structure, so I can refer to it for what to do next and how. If the app is paused and the Application is released, it's not *THAT big a hassle to check for null in my CustomFlow object (that is generated as per the XML) and re-instantiate it. It doesn't sound like this would happen all that often, anyway. Would this be a good example of where Application is the *best tool?
The question as to which method is better largely depends upon what information you are storing and need access to and who (which components, packages, etc.) needs access to that information. Additionally, settings like launchMode and configChanges which alter the lifecycle can help you to determine which method is best for you.
First, let me note, that I am a huge advocate for extending the Application object and often extend the Application class, but take everything stated here in its context as it is important to understand that there are circumstances where it simply is not beneficial.
On the Lifecycle of an Application: Chubbard mostly correctly stated that the Application has the same life as a Singleton component. While they are very close, there are some minute differences. The Application itself is TREATED as a Singleton by the OS and is alive for as long as ANY component is alive, including an AppWidget (which may exist in another app) or ContentResolver.
All of your components ultimately access the same object even if they are in multiple Tasks or Processes. However, this is not guaranteed to remain this way forever (as the Application is not ACTUALLY a Singleton), and is only guaranteed in the Google Android, rather than the manufacturer overridden releases. This means that certain things should be handled with care within the Application Object.
Your Application object will not die unless all of your components are killed as well. However, Android has the option to kill any number of components. What this means is that you are never guaranteed to have an Application object, but if any of your components are alive, there IS an Application to associate it to.
Another nice thing about Application is that it is not extricably bound to the components that are running. Your components are bound to it, though, making it extremely useful.
Things to Avoid in Application Object:
As per ususal, avoid static Contexts. In fact, often, you shouldn't store a Context in here at all, because the Application is a Context itself.
Most methods in here should be static, because you are not guaranteed to get the same Application object, even though its extremely likely.
If you override Application, the type of you data and methods store here will help you further determine whether you need to make a Singleton component or not.
Drawables and its derivatives are the most likely to "leak" if not taken care of, so it is also recommended that you avoid references to Drawables here as well.
Runtime State of any single component. This is because, again, you are not guaranteed to get back the same Application object. Additionally, none of the lifecycle events that occur in an Activity are available here.
Things to store in the Application (over Bundle)
The Application is an awesome place to store data and methods that must be shared between components, especially if you have multiple entry points (multiple components that can be started and run aside from a launch activity). In all of my Applications, for instance, I place my DEBUG tags and Log code.
If you have a ContentProvider or BroadcastReceiver, this makes Application even more ideal because these have small lifecycles that are not "renewable" like the Activity or AppWidgetProvider and can now access those data or methods.
Preferences are used to determine, typically, run options over multiple runs, so this can be a great place to handle your SharedPreferences, for instance, with one access rather than one per component. In fact, anything that "persists" across multiple runs is great to access here.
Finally, one major overlooked advantage is that you can store and organize your Constants here without having to load another class or object, because your Application is always running if one of your components is. This is especially useful for Intent Actions and Exception Messages and other similar types of constants.
Things to store in Bundle rather than Application
Run-time state that is dependent upon the presence or state of a single component or single component run. Additionally, anything that is dependant upon the display state, orientation, or similar Android Services is not preferrable here. This is because Application is never notified of these changes. Finally, anything that depends upon notification from that Android System should not be placed here, such as reaction to Lifecycle events.
And.... Elsewhere
In regard to other data that needs to be persisted, you always have databases, network servers, and the File System. Use them as you always would have.
As useful and overlooked as the Application is, a good understanding is important as it is not ideal. Hopefully, these clarifications will give you a little understanding as to why gurus encourage one way over the other. Understand that many developers have similar needs and most instruction is based on what techniques and knowledge a majority of the community has. Nothing that Google says applies to all programmer's needs and there is a reason that the Application was not declared Final.
Remember, there is a reason Android needs to be able to kill your components. And the primary reason is memory, not processing. By utilizing the Application as described above and developing the appropriate methods to persist the appropriate information, you can build stronger apps that are considerate to the System, the User, its sibling components AND other developers. Utilizing the information that everyone here has provided should give you some great guidance as to how and when to extend your Application.
Hope this helps,
FuzzicalLogic
I prefer to subclass Application and point my manifest to that. I think that's the sane way of coding android although the Android architects from Google think you should use Singletons (eek) to do that. Singletons have the same lifetime as Application so everything that applies to them applies to Application except much less dependency mess Singletons create. Essentially they don't even use bundles. I think using subclass Application has dramatically made programming in Android much faster with far less hassle.
Now for the downside. Your application can be shutdown should the phone need more memory or your Application goes into the background. That could mean the user answered the phone or checked their email. So for example, say you have an Activity that forces the user to login to get a token that other Activities will use to make server calls. That's something you might store in your service object (not android service just a class that sends network calls to your server) that you store in your subclass of Application. Well if your Application gets shutdown you'll loose that token, and when the user clicks the back button your user might return to an Activity that assumes you are already authenticated and boom your service class fails to work.
So what can you do? Continue to use Bundle awfulness? Well no you could easily store security tokens into the bundle (although there might be some security issues with that depending on how this works for your app), or you have to code your Activities to not assume a specific state the Application is in. I had to check for a loss of the token and redirect the user back to the login screen when that happens. But, depending on how much state your Application object holds this could be tricky. But keep in mind your Application can know when it's being shutdown and persist it's internal state to a bundle. That at least allows you to keep your Objects in memory for 99% of the time your Application, and only save/restore when it gets shutdown rather than constantly serializing and deserializing with boiler plate code whenever you move between Activities. Using Application lets you centralize how your program can be brought up and shutdown, and since it normally lives longer than any one activity it can reduce the need for the program to reconstitute the guts of your App as the user moves between Activities. That makes your code cleaner by keeping out details of the app from every Activity, reduces overhead if your Application is already built, shares common instances/code, and allows Activities to be reclaimed without loosing your program all together. All good programs need a centralized hub that is the core, and subclassing Application gives you that while allowing you to participate in the Android lifecycle.
My personal favorite is to use http://flexjson.sourceforge.net/ to serialize my Java objects into bundles as JSON if I need to send objects around or save them. Far easier than writing to sqlite DB when all you need to do is persist data. And nice when sending data between two Activities using objects instead of broken apart primitives.
Remember by centralizing your model in the Application you create a place to share code between multiple Activities so you can always delegate an Activities persistence to an object in the Application by hooking the onPause() as well allowing persistence to be centrally located.
The short answer is: use bundles as it makes saving your state out when you're backgrounded easier. Also, it's complicated.
The long answer:
My understanding is, as soon as you Activity's onPause method is called (and onSaveInstanceState which gives you a bundle into which you should store your Activity's data) your process can be terminated without further warning. Later, when the user comes back to your application, your activity is given an onCreate call with that original bundle from which to restore its state. This will happen to all your activitys in what was your original stack.
Being able to restore your state from the bundle (which Android will save for you as your process goes away) is how Android maintain's the myth of multi-tasking. If you don't dump your activity's state out to a bundle each time onSaveInstanceState is called, your app will look like it's been restarted when the user may have just switched out for a second. This can be especially troubling when the system is resource constrained as the system would need to kill off processes more often in order to keep the device running quickly
Why the Application can be Bad
The Application does not actually get a chance to save any of its data if the process is shut down. It does have an onDestroy method but the docs will tell you that this actually never gets called by the system on an actual device. This means that, in the constrained case I mentioned above, any incidental information about what's going on within an Activity (if you've saved it in the Application) will be lost if the process is ended.
Developer's often miss this case (and it can be really annoying for users) because they're either running on a dev phone which never gets hit with using many applications at the same time. We're also never using the app for a while, then switching to another application and, after a while, switching back again.

Recommended communication pattern for web frontend of command line app

I have a perl app which processes text files from the local filesystem (think about it as an overly-complicated grep).
I want to design a webapp which allows remote users to invoke the perl app by setting the required parameters.
Once it's running it would be desirable some sort of communication between the perl app and the webapp about the status of the process (running, % done, finished).
Which would be a recommended way of communication between the two processes? I was thinking in a database table, but I'm not really sure it's a good idea.
any suggestions are appreciated.
Stackers, go ahead and edit this answer to add code examples or links to them.
DrNoone, two approaches come to mind.
callback
Your greppy app needs to offer a callback function that returns the status and which is periodically called by the Web app.
event
This makes sense if you are already using a Web server/app framework which exposes an event loop usable from external applications (rather unlikely in Perl land). The greppy app fires events on status changes and the Web app attaches/listens to them and acts accordingly.
For IPC as you envision it, a plain database is not so suitable. Look into message queues instead. For great interop, pick AMPQ compliant implementation.
If you run the process using open($handle, "cmd |") you can read the results in real time and print them straight to STDOUT while your response is open. That's probably the simplest approach.

Activity not responding error on emulator when using webservices in json parsing?

Am new to android, am developing application with websevices using json parsing with httpget method,cant use http post method in android actually.
It working fine normally, but many time it shows the error on emulator like activity not responding force close activity.when i put that url in browser it shows the result .but i don't know why this activity not responding error came.
I think the httprequest took more time to retrieve the data from server,but am not sure. any one help me to how to avoid this error or how to minimize this .
I want know what are the possibilities to get this activity not responding error.
Thanks,
Lakshmanan
You need to perform blocking operations such as I/O in a separate thread - see the below linked resource:
http://developer.android.com/guide/practices/design/responsiveness.html:
In Android, the system guards against applications that are insufficiently responsive for a period of time by displaying a dialog to the user, called the Application Not Responding (ANR) dialog, shown at right in Figure 1. The user can choose to let the application continue, but the user won't appreciate having to act on this dialog every time he or she uses your application. It's critical to design responsiveness into your application, so that the system never has cause to display an ANR dialog to the user.
To avoid ANR (Application Not Responding) dialog,
Your business logic code is inside doBackground() of AsyncTask and You may also need to override onPostExecute(),etc. After that it is better to invoke the async task in a Service (bound or normal service).
Service:
(bound service or normal service based on your requirement)
From, android office documentation:
A service is "bound" when an application component binds to it by calling bindService(). A bound service offers a client-server interface that allows components to interact with the service, send requests, get results, and even do so across processes with interprocess communication (IPC). A bound service runs only as long as another application component is bound to it. Multiple components can bind to the service at once, but when all of them unbind, the service is destroyed.