How do I draw a 0.5 degree x 0.5 degree grid over the country map in a MATLAB figure?
The code below gives me a gridded figure but not with 0.5x0.5 degree spacing.
borders('Iran Islamic Republic of')
grid on
ax.GridLineStyle = '-';
Can anyone tell me how to add 0.5x0.5 grid along x and y-axis to this figure?
The borders function is taken from the MATLAB File Exchange
You can use xticks() and yticks() functions (matlab tutorial). Your code should be something like:
borders('Iran Islamic Republic of')
grid on
ax.GridLineStyle = '-';
% Modify the X and Y ticks positions
xticks([44:.5:65]);
yticks([25:.5:40]);
This creates ticks every 0.5 degrees (from degree 44 until 65 in x, and from 25 to 40 in y). If the tick labels are overlaping, you can delete some. For example for the x-axis:
%Delete some labels, otherwise overcrowded
xlabels = xticklabels();
for i=2:2:length(xticks())
xlabels(i)={''};
end
xticklabels(xlabels)
Related
I use camera calibration in matlab to detect some checkerboard patterns, after
figure; showExtrinsics(cameraParams, 'CameraCentric');
Now, I want to rotate the checkerboard patterns around the x-axis such that all of them have nearly the same y coordinates in the camera frame.
Method:
I get the positions of all patterns in the camera's frame. Then I do optimization,where the objective function is to minimize variance in y and the variable is rotation about x ranging from o to 360.
Problem:
But when I plot the transformed y-coordinates, they are even nearly in a line.
Code:
Get the checkerboad points:
%% Get rotation and translation matrices for each image;
T_cw=cell(num_imgs,1); % stores camera to world rotation and translation for each image
pixel_coordinates=zeros(num_imgs,2); % stores the pixel coordinates of each checkerboard origin
for ii=1:num_imgs,
% Calibrate the camera
im=imread(list_imgs_path{ii});
[imagePoints, boardSize] = detectCheckerboardPoints(im);
[r_wc, t_wc] = extrinsics(imagePoints, worldPoints, cameraParams);
T_wc=[r_wc,t_wc';0 0 0 1];
% World to camera matrix
T_cw{ii} = inv(T_wc);
t_cw{ii}=T_cw{ii}(1:3,4); % x,y,z coordinates in camera's frame
end
Data(num_imgs=10):
t_cw
[-1072.01388542262;1312.20387622761;-1853.34408157349]
[-1052.07856598756;1269.03455126794;-1826.73576892251]
[-1091.85978641218;1351.08261414473;-1668.88197803184]
[-1337.56358084648;1373.78548638383;-1396.87603554914]
[-1555.19509876309;1261.60428874489;-1174.63047408086]
[-1592.39596647158;1066.82210015055;-1165.34417772659]
[-1523.84307918660;963.781819272748;-1207.27444716506]
[-1614.00792252030;893.962075837621;-1114.73528985018]
[-1781.83112607964;708.973204727939;-797.185326205240]
[-1781.83112607964;708.973204727939;-797.185326205240]
Main code (Optimization and transformation):
%% Get theta for rotation
f_obj = #(x)var_ycors(x,t_cw);
opt_theta = fminbnd(f_obj,0,360);
%% Plotting (rotate ycor and check to fix theta)
y_rotated=zeros(1,num_imgs);
for ii=1:num_imgs,
y_rotated(ii)=rotate_cor(opt_theta,t_cw{ii});
end
plot(1:numel(y_rotated),y_rotated);
function var_computed=var_ycors(theta,t_cw)
ycor=zeros(1,numel(t_cw));
for ii =1:numel(t_cw),
ycor(ii)=rotate_cor(theta,t_cw{ii});
end
var_computed=var(ycor);
end
function ycor=rotate_cor(theta,mat)
r_x=[1 0 0; 0 cosd(theta) -sind(theta); 0 sind(theta) cosd(theta)];
rotate_mat=mat'*r_x;
ycor=rotate_mat(2);
end
This is a clear eigenvector problem!
Take your centroids:
t_cw=[-1072.01388542262;1312.20387622761;-1853.34408157349
-1052.07856598756;1269.03455126794;-1826.73576892251
-1091.85978641218;1351.08261414473;-1668.88197803184
-1337.56358084648;1373.78548638383;-1396.87603554914
-1555.19509876309;1261.60428874489;-1174.63047408086
-1592.39596647158;1066.82210015055;-1165.34417772659
-1523.84307918660;963.781819272748;-1207.27444716506
-1614.00792252030;893.962075837621;-1114.73528985018
-1781.83112607964;708.973204727939;-797.185326205240
-1781.83112607964;708.973204727939;-797.185326205240];
t_cw=reshape(t_cw,[3,10])';
compute PCA on them, so we know the principal conponents:
[R]=pca(t_cw);
And.... thats it! R is now the transformation matrix between your original points and the rotated coordinate system. As an example, I will draw in red the old points and in blue the new ones:
hold on
plot3(t_cw(:,1),t_cw(:,2),t_cw(:,3),'ro')
trans=t_cw*R;
plot3(trans(:,1),trans(:,2),trans(:,3),'bo')
You can see that now the blue ones are in a plane, with the best possible fit to the X direction. If you want them in Y direction, just rotate 90 degrees in Z (I am sure you can figure out how to do this with 2 minutes of Google ;) ).
Note: This is mathematically the best possible fit. I know they are not as "in a row" as one would like, but this is because of the data, this is honestly the best possible fit, as that is what the eigenvectors are!
I have a video of moving hose in an experiment and I need to detect certain points in that hose and calculate the amplitude of their movements, I am using the code below and I am able to extract the required point using detectSURFFeatures, the function get many unnecessary points so I am using cuba = ref_pts.selectStrongest(5); to choose only five points, the problem is I can not get a function to put a bounding box about this 5 points and get their pixel values through the video, Kindly advice what functions can be used, thanks :)
clear;
clc;
% Image aquisition from Video and converting into gray scale
vidIn = VideoReader('ItaS.mp4');
%% Load reference image, and compute surf features
ref_img = read(vidIn, 1);
ref_img_gray = rgb2gray(ref_img);
ref_pts = detectSURFFeatures(ref_img_gray);
[ref_features, ref_validPts] = extractFeatures(ref_img_gray, ref_pts);
figure; imshow(ref_img);
hold on; plot(ref_pts.selectStrongest(5));
cuba = ref_pts.selectStrongest(5);
stats1 = round(cuba.Location);
If you want to find the bounding box which covers all the five points you selected: stats1 now contains (x, y) coordinates of the selected 5 points. Find min and max for x and y coordinates. min values of x and y gives you the starting point of the rectangle. Width and height of the bounding box is now the difference of max and min in y and x directions.
If you want to extract the part of the original image inside the bounding box: just copy that part to another variable as you want. Consider the following example.
img2 = img1(y:h, x:w, :)
Here, x and y are the x and y coordinates of the top left corner of the bounding box. w and h are the width and height of the bounding box.
I have data that records the x and y positions of an animal in a 2D assay over time stored in a matlab matrix. I can plot these co-ordinates over time, and extract the velocity information and plot this using cline.
The problem I am having at the moment is calculating the heading angle. It should be a trivial trigonometry question, but I am drawing a blank on the best way to start.
The data is stored in a matrix xy representing x and y co-ordinates:
796.995391705069 151.755760368664
794.490825688073 150.036697247706
788.098591549296 145.854460093897
786.617021276596 144.327659574468
781.125000000000 140.093750000000
779.297872340426 138.072340425532
775.294642857143 133.879464285714
What I would like to be able to do is know the angle of the line drawn from (796.995, 151.755) to (794.490, 150.036), and so on. My research suggests atan2 will be the appropriate function, but I am unsure how to call it correctly to give useful information.
difx = xy(1,1) - xy(2,1);
dify = xy(1,2) - xy(2,2);
angle = atan2(dify,difx);
angle = angle*180/pi % convert to degrees
The result is 34.4646. Is this correct?
If it is correct, how do I get the value to be in the range 0-360?
You can use the diff function to get all the differences at once:
dxy = diff(xy); % will contain [xy(2,1)-xy(1,1) xy(2,2)-xy(1,2); ...
Then you compute the angle using the atan2 function:
a = atan2(dxy(:,2), dxy(:,1));
You convert to degrees with
aDeg = 180 * a / pi;
And finally take the angle modulo 360 to get it between 0 and 360:
aDeg = mod(aDeg, 360);
So - you pretty much got it right, yes. Except that you have calculated the heading from point 2 to point 1, and I suspect you want to start at 1 and move towards 2. That would give you a negative number - or modulo 360, an angle of about 325 degrees.
Also, using the diff function gets you the entire array of headings all at once which is a slight improvement over your code.
[rc mi]=
EDIT the problem of "phase wrapping" - when the heading goes from 359 to 0 - is quite a common problem. If you are interested in knowing when a large change happens, you can try the following trick (using aDeg from above - angle in degrees).
dDeg1 = diff(aDeg); % the change in angle
dDeg2 = diff(mod(aDeg + 90, 360)); % we moved the phase wrap point by 180 degrees
dDeg12 = [dDeg1(:) dDeg2(:)]';
[rc mi]= min(abs(dDeg12));
indx = sub2ind(size(dDeg12), mi, 1:size(dDeg12, 2));
result = dDeg12(ii);
What I did there: one of the variables (dDeg or dDeg2) does not see the phase wrap, and the min function finds out which one (it will have a smaller absolute difference). The sub2ind looks up that number (it is either positive or negative - but it's the smaller one of the two), and that is the value that ends up in result.
You can verify the angle by plotting a little line that starts at the first point and end in the direction of the heading. If the angle is correct, it will point in the direction of the next point in xy. Everything depends on where yo define 0 degrees at (straight up, say) from and whether positive degrees is rotation counterclockwise (I do) or clockwise. In MATLAB you can get the numbers between 0 and 360 but using modulo---or you can just add 180 to your results but this will change the definition of where the 0 degree mark is.
I made the following script that is a bit complex but shows how to calculate the heading/angle for all points in vector format and then displays them.
xy =[ 796.995391705069 151.755760368664
794.490825688073 150.036697247706
788.098591549296 145.854460093897
786.617021276596 144.327659574468
781.125000000000 140.093750000000
779.297872340426 138.072340425532
775.294642857143 133.879464285714];
% t = linspace(0,3/2*pi, 14)';
% xy = [sin(t), cos(t)];
% calculate the angle:
myDiff = diff(xy);
myAngle = mod(atan2(myDiff(:,1), myDiff(:,2))*180/pi, 360);
% Plot the original Data:
figure(1);
clf;
subplot(1,3,1);
plot(xy(:,1), xy(:,2), '-bx', 'markersize', 12);
hold all
axis equal;grid on;
title('Original Data');
% Plot the calculated angle:
subplot(1,3,2);
plot(myAngle);
axis tight; grid on;
title('Heading');
% Now plot the result with little lines pointing int he heading:
subplot(1,3,3);
plot(xy(:,1), xy(:,2), '-bx', 'markersize', 12);
hold all
% Just for visualization:
vectorLength = max(.8, norm(xy(1,:)- xy(2,:)));
for ind = 1:length(xy)-1
startPoint = xy(ind,:)';
endPoint = startPoint + vectorLength*[sind(myAngle(ind)); cosd(myAngle(ind))];
myLine = [startPoint, endPoint];
plot(myLine(1,:), myLine(2, :), ':r ', 'linewidth', 2)
end
axis equal;grid on;
title('Original Data with Heading Drawn On');
For example, if you use my test data
t = linspace(0,3/2*pi, 14)';
xy = [sin(t), cos(t)];
You get the following:
and if you do yours you get
Note how the little red line starts at the original data point and moves in the direction of the next point---just like the original blue line connecting the points.
Also note that the use of diff in the code to difference all the points properly at once. This is faster and avoids any problems with the direction--looks like in your case it's swapped.
Imagine a dome with its centre in the +z direction. What I want to do is to move that dome's centre to a different axis (e.g. 20 degrees x axis, 20 degrees y axis, 20 degrees z axis). How can I do that ? Any hint/tip helps.
Add more info:
I've been dabbling with rotation matrices in wiki for a while. The problem is, it is not a commutative operation. RxRyRz is not same as RzRyRx. So based on the way I multiple it I get a different final results. For example, I want my final projection to have 20 degrees from the original X axis, 20 degrees from original Y axis and 20 degrees from original Z axis. Based on the matrix, giving alpha, beta, gamma values 20 (or its corresponding radian) does NOT result the intended rotation. Am I missing something? Is there a matrix that I can just put the intended angles and get it at the end ?
Using a rotation matrix is an easy way to rotate a collection of (x,y,z) points. You can calculate a rotation matrix for your case using the equations in the general rotation section. Note that figuring out the angle values to plug into those equations can be tricky. Think of it as rotating about one axis at a time and remember that the order of your rotations (order of multiplications) does matter.
An alternative to the general rotation equations is to calculate a rotation matrix from axis and angle. It may be easier for you to define correct parameters with this method.
Update: After perusing Wikipedia, I found a simple way to calculate rotation axis and angle between two vectors. Just fill in your starting and ending vectors for a and b here:
a = [0.0 0.0 1.0];
b = [0.5 0.5 0.0];
vectorMag = #(x) sqrt(sum(x.^2));
rotAngle = acos(dot(a,b) / (vectorMag(a) * vectorMag(b)))
rotAxis = cross(a,b)
rotAxis =
-0.5 0.5 0
rotAngle =
1.5708
I have a distribution of tube radius r, and I would like to plot tubes for all the sampled r in single figure as shown in the figure above. The tubes have following characteristics:
The length of all tubes is constant, but radius is varying.
The narrowest tube will be completely filled
with light gray color.
The length of the light gray color from bottom in all other tubes is
inversely proportional to the radius of the tube i.e.
length of light grey color from bottom = constant/r
The remaining length of the tube will be filled with dark gray color.
Magnitudes of r and total length of each tube is of the order of 1e-005m and 1e-002 m, respectively, so they need to be standardized compared to the X and Y axes units.
The white interspaces are just spaces and not tubes.
UPDATE (Based on the answer by Boris)
This is the code from Boris in which I made certain changes based on the characteristics of the tubes that I have described above. I am having scaling issues as I am not able to visualize my network of tubes as clearly as can be seen in the figure above.
function drawGrayTube (x, r, sigma_wn, theta, del_rho, rmin, rmax,L)
% sigma_wn is in N/m (=Kg/s^2), theta is in degrees, del_rho is in Kg/m^3
% and L is in m
h=((2*sigma_wn*cos((pi/180)*theta))./(del_rho*9.81.*r));
hmin=((2*sigma_wn*cos((pi/180)*theta))./(del_rho*9.81.*rmax));
hmax=((2*sigma_wn*cos((pi/180)*theta))./(del_rho*9.81.*rmin));
rectangle ('Position',[x,0,r/rmax,h], 'FaceColor',[0.7,0.7,0.7]);
ylim([0 1]);
if L>h
rectangle ('Position',[x,L,r/rmax,L-h], 'FaceColor',[0.3,0.3,0.3]);
ylim([0 1]);
else
rectangle ('Position',[x,L,r/rmax,L], 'FaceColor',[0.3,0.3,0.3]);
ylim([0 1]);
end
end
A simple function to draw the gray tubes could be for instance
function drawGrayTube (x, w, h)
rectangle ('Position',[x,0,w,h], 'FaceColor',[0.7,0.7,0.7]);
rectangle ('Position',[x,h,w,100-h], 'FaceColor',[0.3,0.3,0.3]);
end
Hereby, x is the x position of the tube, w denotes the width and h between 0 and 100 the height of the light gray part of the tube.
You can now use it in your example by calling
drawGrayTube (x, r, 100*constant/r)
where you have to adapt the constant such that constant/r is at most 1.
You can write a similar function for the white interspaces.
Assume that you have given a vector of radii (already scaled such that the values are between 0 and 1), e.g., r=[0.5, 0.7, 0.9, 0.1, 0.5, 0.01] then on possibility to draw the tubes is
interspace = 0.5;
for i=1:length(r)
drawGrayTube(sum(r(1:i-1))+i*interspace, 100*r(i)+1e-10, r(i)+1e-10);
end
You should use the function rectangle