I have a use case which I am trying to solve using Spark. The use case is that I have to call an API which expects a batchSize and token and then it gives back the token for next page. It gives me a list of JSON objects. Now I have to call this API till all the results are returned and write them all to s3 in parquet format. The size of returned object can range from 0 to 100 million.
My approach is that I am first getting let's say a batch of 1 million object, I convert them into a dataset and then writing to parquet using
dataSet.repartition(1).write.mode(SaveMode.Append)
.option("mapreduce.fileoutputcommitter.algorithm.version", "2")
.parquet(s"s3a://somepath/")
and then repeat the process till my API says that there's no more data, i.e. token is null
So the process is that those API calls will have to be run on the driver and sequentially. And once I get a million I will write to s3.
I have been seeing these memory issues on driver.
Application application_1580165903122_19411 failed 1 times due to AM Container for appattempt_1580165903122_19411_000001 exited with exitCode: -104
Diagnostics: Container [pid=28727,containerID=container_1580165903122_19411_01_000001] is running beyond physical memory limits. Current usage: 6.6 GB of 6.6 GB physical memory used; 16.5 GB of 13.9 GB virtual memory used. Killing container.
Dump of the process-tree for container_1580165903122_19411_01_000001 :
I have seen some weird behavior in a sense that, sometimes 30 million works fine and sometimes it fail due to this. Even 1 million fails sometimes.
I am wondering if I am doing some very silly mistake or is there any better approach for this?
This design is not scalable and putting a lot of pressure on the driver, so it is expected for it to crash. Additionally a lot of data is accumulated in memory before writing to s3.
I will recommend you to use Spark streaming to read data from API.In this way many executors will do the work and the solution will be much scalable. Here is an example - RestAPI service call from Spark Streaming
In those executors you can accumulate the API response in a balanced way, say accumulate 20,000 records but not wait for 5M records. After say 20,000 write them to S3 in "append" mode. The "append" mode will help multiple process work in tandem and not step on each other.
Related
For a task we need to process huge transactional xml files which are gz(ipped). Each line in the uncompressed file can be interpreted as its own xml record.
When working with small files like 100 MiB this works fine. The moment à collect() is performed on the huge input file it tends to fail OOM and the jvm crashes.
As this is a compressed (gz) file it can not be processed in parallel (AFAIK).
I was thinking about
using the toLocalIterator() to split it first up into smaller packets of 200K xml entries which are distributed to the other nodes for their cost om processing. Apparently the toLocalIterator() does also the collect() first (to test)
Other option is to use the some kind of index value and filter on it ("index > 5000") and set the limit(5000) to simulate paging through the 2 Million or more entries.
But I have no clue to what I should pay attention to parralize. Any tips are welcome.
Settings to pay attention and how to apply them in Azure Synapse etc.
how to push the read xml over the nodes to be processed in their executor/tasks.
could streaming a single file be an option?
any tips are welcome
Currently my code is done in scala due the fact the java libraries are easily accessible to convert the xml to json and extract the values I need.
Many thanks in advance (also for reading this)
TL;DR suggestion:
Step 1. Increase driver memory and test
Step 2. Increase executor memory and test if first step fails
Slightly longer version:
The fact that it gives OOM on collect() operation doesn't indicate whether it is OOM on spark.read operation or df.collect()
Spark scheduler will run the DAG when it encounters an Action but not when it is a Transformation.
So if collect is your first action, it is at that point it actually runs the DAG and the OOM may even be on read but manifesting as OOM on collect
Spark UI will provide insights on where the OOM happens
You are right that uncompressing gzip wont be parallelised. On read operation, it will use a single executor and even a single core. So I would increase executor memory until there is sufficient memory to gzip the whole file into memory - not just to the exact file size, leave the usual 400MB / 0.7% buffer.
If the error is indeed happening on the collect() operation, then you need to sufficiently increase driver memory.
Your app will not be parallelised at read. Your app will not be parallelised at collect()
You app can be parallelised during the transformations in between them and you can force the parallelisation to the extent you want to tune it by repartitioning your dataframe / dataset / rdd further.
Finally, I would consider again whether you do need the collect or whether you can store the output as a number of partitioned files?
I think the zipped file is always going to be a bottleneck so one alternative is to unzip it and see if that helps. I would also consider loading up the xml to a table in Synapse (which can deal with gzipped files). This would have the effect of unzipping it, you could then pass it into a Synapse Notebook with the synapsesql method, eg in Scala:
// Get the table with the XML column from the database and expose as temp view
val df = spark.read.synapsesql("yourPool.dbo.someXMLTable")
df.createOrReplaceTempView("someXMLTable")
You could process the XML as I have done here and then write it back to the Synapse dedicated SQL pool as an internal table:
val df2 = spark.sql("""
SELECT
colA,
colB,
xpath_string(pkData,'/DataSet/EnumObject[name="Inpatient"]/value') xvalue
FROM someXMLTable
""")
// Write that dataframe back to the dedicated SQL pool
df2.write.synapsesql("yourPool.dbo.someXMLTable_processed", Constants.INTERNAL)
This would ensure you are keeping things in parallel, no collect required. NB there are a couple of assumptions in there around uploading the gzipped files to a dedicated SQL pool and that the xpath_string does what you need which need to be checked and confirmed. The proposed pattern:
I do a fair amount of ETL using Apache Spark on EMR.
I'm fairly comfortable with most of the tuning necessary to get good performance, but I have one job that I can't seem to figure out.
Basically, I'm taking about 1 TB of parquet data - spread across tens of thousands of files in S3 - and adding a few columns and writing it out partitioned by one of the date attributes of the data - again, parquet formatted in S3.
I run like this:
spark-submit --conf spark.dynamicAllocation.enabled=true --num-executors 1149 --conf spark.driver.memoryOverhead=5120 --conf spark.executor.memoryOverhead=5120 --conf spark.driver.maxResultSize=2g --conf spark.sql.shuffle.partitions=1600 --conf spark.default.parallelism=1600 --executor-memory 19G --driver-memory 19G --executor-cores 3 --driver-cores 3 --class com.my.class path.to.jar <program args>
The size of the cluster is dynamically determined based on the size of the input data set, and the num-executors, spark.sql.shuffle.partitions, and spark.default.parallelism arguments are calculated based on the size of the cluster.
The code roughly does this:
va df = (read from s3 and add a few columns like timestamp and source file name)
val dfPartitioned = df.coalesce(numPartitions)
val sqlDFProdDedup = spark.sql(s""" (query to dedup against prod data """);
sqlDFProdDedup.repartition($"partition_column")
.write.partitionBy("partition_column")
.mode(SaveMode.Append).parquet(outputPath)
When I look at the ganglia chart, I get a huge resource spike while the de-dup logic runs and some data shuffles, but then the actual writing of the data only uses a tiny fraction of the resources and runs for several hours.
I don't think the primary issue is partition skew, because the data should be fairly distributed across all the partitions.
The partition column is essentially a day of the month, so each job typically only has 5-20 partitions, depending on the span of the input data set. Each partition typically has about 100 GB of data across 10-20 parquet files.
I'm setting spark.sql.files.maxRecordsPerFile to manage the size of those output files.
So, my big question is: how can I improve the performance here?
Simply adding resources doesn't seem to help much.
I've tried making the executors larger (to reduce shuffling) and also to increase the number of CPUs per executor, but that doesn't seem to matter.
Thanks in advance!
Zack, I have a similar use case with 'n' times more files to process on a daily basis. I am going to assume that you are using the code above as is and trying to improve the performance of the overall job. Here are couple of my observations:
Not sure what the coalesce(numPartitions) number actually is and why its being used before de-duplication process. Your spark-submit shows you are creating 1600 partitions and thats good enough to start with.
If you are going to repartition before write then the coalesce above may not be beneficial at all as re-partition will shuffle data.
Since you claim writing 10-20 parquet files it means you are only using 10-20 cores in writing in the last part of your job which is the main reason its slow. Based on 100 GB estimate the parquet file ranges from approx 5GB to 10 GB, which is really huge and I doubt one will be able to open them on their local laptop or EC2 machine unless they use EMR or similar (with huge executor memory if reading whole file or spill to disk) because the memory requirement will be too high. I will recommend creating parquet files of around 1GB to avoid any of those issues.
Also if you create 1GB parquet file, you will likely speed up the process 5 to 10 times as you will be using more executors/cores to write them in parallel. You can actually run an experiment by simply writing the dataframe with default partitions.
Which brings me to the point that you really don't need to use re-partition as you want to write.partitionBy("partition_date") call. Your repartition() call is actually forcing the dataframe to only have max 30-31 partitions depending upon the number of days in that month which is what is driving the number of files being written. The write.partitionBy("partition_date") is actually writing the data in S3 partition and if your dataframe has say 90 partitions it will write 3 times faster (3 *30). df.repartition() is forcing it to slow it down. Do you really need to have 5GB or larger files?
Another major point is that Spark lazy evaluation is sometimes too smart. In your case it will most likely only use the number of executors for the whole program based on the repartition(number). Instead you should try, df.cache() -> df.count() and then df.write(). What this does is that it forces spark to use all available executor cores. I am assuming you are reading files in parallel. In your current implementation you are likely using 20-30 cores. One point of caution, as you are using r4/r5 machines, feel free to up your executor memory to 48G with 8 cores. I have found 8cores to be faster for my task instead of standard 5 cores recommendation.
Another pointer is to try ParallelGC instead of G1GC. For the use case like this when you are reading 1000x of files, I have noticed it performs better or not any worse than G1Gc. Please give it a try.
In my workload, I use coalesce(n) based approach where 'n' gives me a 1GB parquet file. I read files in parallel using ALL the cores available on the cluster. Only during the write part my cores are idle but there's not much you can do to avoid that.
I am not sure how spark.sql.files.maxRecordsPerFile works in conjunction with coalesce() or repartition() but I have found 1GB seems acceptable with pandas, Redshift spectrum, Athena etc.
Hope it helps.
Charu
Here are some optimizations for faster running.
(1) File committer - this is how Spark will read the part files out to the S3 bucket. Each operation is distinct and will be based upon
spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version 2
Description
This will write the files directly to part files instead or initially loading them to temp files and copying them over to their end-state part files.
(2) For file size you can derive it based upon getting the average number of bytes per record. Below I am figuring out the number of bytes per record to figure the number of records for 1024 MBs. I would try it first with 1024MBs per partition, then move upwards.
import org.apache.spark.util.SizeEstimator
val numberBytes : Long = SizeEstimator.estimate(inputDF.rdd)
val reduceBytesTo1024MB = numberBytes/123217728
val numberRecords = inputDF.count
val recordsFor1024MB = (numberRecords/reduceBytesTo1024MB).toInt + 1
(3) [I haven't tried this] EMR Committer - if you are using EMR 5.19 or higher, since you are outputting Parquet. You can set the Parquet optimized writer to TRUE.
spark.sql.parquet.fs.optimized.committer.optimization-enabled true
I have a cluster and I execute wholeTextFiles which should pull about a million text files who sum up to approximately 10GB total
I have one NameNode and two DataNode with 30GB of RAM each, 4 cores each. The data is stored in HDFS.
I don't run any special parameters and the job takes 5 hours to just read the data. Is that expected? are there any parameters that should speed up the read (spark configuration or partition, number of executors?)
I'm just starting and I've never had the need to optimize a job before
EDIT: Additionally, can someone explain exactly how the wholeTextFiles function works? (not how to use it, but how it was programmed). I'm very interested in understand the partition parameter, etc.
EDIT 2: benchmark assessment
So I tried repartition after the wholeTextFile, the problem is the same because the first read is still using the pre-defined number of partitions, so there are no performance improvements. Once the data is loaded the cluster performs really well... I have the following warning message when dealing with the data (for 200k files), on the wholeTextFile:
15/01/19 03:52:48 WARN scheduler.TaskSetManager: Stage 0 contains a task of very large size (15795 KB). The maximum recommended task size is 100 KB.
Would that be a reason of the bad performance? How do I hedge that?
Additionally, when doing a saveAsTextFile, my speed according to Ambari console is 19MB/s. When doing a read with wholeTextFiles, I am at 300kb/s.....
It seems that by increase the number of partitions in wholeTextFile(path,partitions), I am getting better performance. But still only 8 tasks are running at the same time (my number of CPUs). I'm benchmarking to observe the limit...
To summarize my recommendations from the comments:
HDFS is not a good fit for storing many small files. First of all, NameNode stores metadata in memory so the amount of files and blocks you might have is limited (~100m blocks is a max for typical server). Next, each time you read file you first query NameNode for block locations, then connect to the DataNode storing the file. Overhead of this connections and responses is really huge.
Default settings should always be reviewed. By default Spark starts on YARN with 2 executors (--num-executors) with 1 thread each (--executor-cores) and 512m of RAM (--executor-memory), giving you only 2 threads with 512MB RAM each, which is really small for the real-world tasks
So my recommendation is:
Start Spark with --num-executors 4 --executor-memory 12g --executor-cores 4 which would give you more parallelism - 16 threads in this particular case, which means 16 tasks running in parallel
Use sc.wholeTextFiles to read the files and then dump them into compressed sequence file (for instance, with Snappy block level compression), here's an example of how this can be done: http://0x0fff.com/spark-hdfs-integration/. This will greatly reduce the time needed to read them with the next iteration
I have a single test node with 8 GB ram on which I am loading barely 10 MB of data(from csv files) into Cassandra(on the same node itself). Im trying to process this data using spark(running on the same node).
Please note that for SPARK_MEM, Im allocating 1 GB of RAM and SPARK_WORKER_MEMORY I'm allocating the same. The allocation of any extra amount of memory results in spark throwing a "Check if all workers are registered and have sufficient memory error", which is more often than not indicative of Spark trying to look for extra memory(as per SPARK_MEM and SPARK_WORKER_MEMORY properties) and coming up short.
When I try to load and process all data in the Cassandra table using spark context object, I'm getting an error during processing. So, I'm trying to use a looping mechanism to read chunks of data at a time from one table, process them and put them in another table.
My source code has the following structure
var data=sc.cassandraTable("keyspacename","tablename").where("value=?",1)
data.map(x=>tranformFunction(x)).saveToCassandra("keyspacename","tablename")
for(i<-2 to 50000){
data=sc.cassandraTable("keyspacename","tablename").where("value=?",i)
data.map(x=>tranformFunction(x)).saveToCassandra("keyspacename","tablename")
}
Now, this works for a while, for around 200 loops, and then this throws an error: java.lang.OutOfMemoryError: unable to create a new native thread.
I've got two questions:
Is this the right way to deal with data?
How can processing just 10 MB of data do this to a cluster?
You are running a query inside the for loop. If the 'value' column is not a key/indexed column, Spark will load the table into memory and then filter on the value. This will certainly cause an OOM.
I have a folder with 150 G of txt files (around 700 files, on average each 200 MB).
I'm using scala to process the files and calculate some aggregate statistics in the end. I see two possible approaches to do that:
manually loop through all the files, do the calculations per file and merge the results in the end
read the whole folder to one RDD, do all the operations on this single RDD and let spark do all the parallelization
I'm leaning towards the second approach as it seems cleaner (no need for parallelization specific code), but I'm wondering if my scenario will fit the constraints imposed by my hardware and data. I have one workstation with 16 threads and 64 GB of RAM available (so the parallelization will be strictly local between different processor cores). I might scale the infrastructure with more machines later on, but for now I would just like to focus on tunning the settings for this one workstation scenario.
The code I'm using:
- reads TSV files, and extracts meaningful data to (String, String, String) triplets
- afterwards some filtering, mapping and grouping is performed
- finally, the data is reduced and some aggregates are calculated
I've been able to run this code with a single file (~200 MB of data), however I get a java.lang.OutOfMemoryError: GC overhead limit exceeded
and/or a Java out of heap exception when adding more data (the application breaks with 6GB of data but I would like to use it with 150 GB of data).
I guess I would have to tune some parameters to make this work. I would appreciate any tips on how to approach this problem (how to debug for memory demands). I've tried increasing the 'spark.executor.memory' and using a smaller number of cores (the rational being that each core needs some heap space), but this didn't solve my problems.
I don't need the solution to be very fast (it can easily run for a few hours even days if needed). I'm also not caching any data, but just saving them to the file system in the end. If you think it would be more feasible to just go with the manual parallelization approach, I could do that as well.
Me and my team had processed a csv data sized over 1 TB over 5 machine #32GB of RAM each successfully. It depends heavily what kind of processing you're doing and how.
If you repartition an RDD, it requires additional computation that
has overhead above your heap size, try loading the file with more
paralelism by decreasing split-size in
TextInputFormat.SPLIT_MINSIZE and TextInputFormat.SPLIT_MAXSIZE
(if you're using TextInputFormat) to elevate the level of
paralelism.
Try using mapPartition instead of map so you can handle the
computation inside a partition. If the computation uses a temporary
variable or instance and you're still facing out of memory, try
lowering the number of data per partition (increasing the partition
number)
Increase the driver memory and executor memory limit using
"spark.executor.memory" and "spark.driver.memory" in spark
configuration before creating Spark Context
Note that Spark is a general-purpose cluster computing system so it's unefficient (IMHO) using Spark in a single machine
To add another perspective based on code (as opposed to configuration): Sometimes it's best to figure out at what stage your Spark application is exceeding memory, and to see if you can make changes to fix the problem. When I was learning Spark, I had a Python Spark application that crashed with OOM errors. The reason was because I was collecting all the results back in the master rather than letting the tasks save the output.
E.g.
for item in processed_data.collect():
print(item)
failed with OOM errors. On the other hand,
processed_data.saveAsTextFile(output_dir)
worked fine.
Yes, PySpark RDD/DataFrame collect() function is used to retrieve all the elements of the dataset (from all nodes) to the driver node. We should use the collect() on smaller dataset usually after filter(), group(), count() etc. Retrieving larger dataset results in out of memory.