Coq difficulties in defining constructors using coerced types - coq

Definitions
I'm working on formalizing a typed lambda calculus in Coq, and to keep the notation manageable I've come to rely a lot on coercions. However, I've been running into some difficulties which seem odd.
Right now I'm trying to work with the following types:
type: A descriptor of an allowable type in the language (like function, Unit, etc...)
var: A variable type, defined as nat
VarSets: set of vars
Judgement: a var/my_type pair
ty_ctx: Lists of judgements.
ctx_join: Pairs of ty_ctx's describing disjoint sets of variables
The actual definitions are all given below, except for ctx_join which is given in the next block
(* Imports *)
Require Import lang_spec.
From Coq Require Import MSets.
Require Import List.
Import ListNotations.
Module VarSet := Make(Nat_as_OT).
Inductive Judgement : Type :=
| judge (v : var) (t : type)
.
Definition ty_ctx := (list Judgement).
Definition disj_vars (s1 s2 : VarSet.t) := VarSet.Empty (VarSet.inter s1 s2).
Often I'd like to make statements like "this var does not appear in the set of vars bound by ty_ctx", and to that end I've set up a bunch of coercions between these types below.
(* Functions to convert between the different types listed above *)
Fixpoint var_to_varset (v : var) : VarSet.t :=
VarSet.singleton v.
Coercion var_to_varset : var >-> VarSet.t.
Fixpoint bound_variables (g : ty_ctx) : VarSet.t :=
match g with
| nil => VarSet.empty
| cons (judge v _) g' =>VarSet.union (VarSet.singleton v) (bound_variables g')
end.
Coercion bound_variables : ty_ctx >-> VarSet.t.
Inductive ctx_join :=
| join_single (g : ty_ctx)
| join_double (g1 g2 : ty_ctx)
(disjoint_proof : disj_vars g1 g2)
.
Fixpoint coerce_ctx_join (dj : ctx_join) : ty_ctx :=
match dj with
| join_single g => g
| join_double g1 g2 _ => g1 ++ g2
end.
Coercion coerce_ctx_join : ctx_join >-> ty_ctx.
Fixpoint coerce_judgement_to_ty_ctx (j : Judgement) : ty_ctx :=
cons j nil.
Coercion coerce_judgement_to_ty_ctx : Judgement >-> ty_ctx.
You'll notice that the definition of ctx_join relies on coercing its arguments from ty_ctx to VarSet.
I've drawn up the conversion hierarchy just to make things clear
The Problem
I'd like to define an inductive type with the following constructor
Inductive expr_has_type : ty_ctx -> nat -> type -> Prop :=
(* General Expressions *)
| ty_var (g : ty_ctx) (x : var) (t : type) (xfree : disj_vars x g)
: expr_has_type (join_double (judge x t) g xfree) x t
.
The problem is that when I do, I get the following error:
Error:
In environment
expr_has_type : ty_ctx -> nat -> type -> Prop
g : ty_ctx
x : var
t : type
xfree : disj_vars x g
The term "xfree" has type "disj_vars x g" while it is expected to have type
"disj_vars (judge x t) g" (cannot unify "VarSet.In a (VarSet.inter (judge x t) g)" and
"VarSet.In a (VarSet.inter x g)").
However, if I change the type of xfree to disj_vars (VarSet.singleton x) g, then the definition works fine! This seems very odd, as disj_vars is defined only on VarSets, and so it seems like x should automatically be converted toVarSet.singleton x since that's how the coercion is set up.
Even weirder is the fact that if I don't set up the coercion from vars to varsets, then Coq correctly complains about applying dis_vars to a var instead of a VarSet. So the coercion is definitely doing something
Can someone explain to me why the first definition fails? Given the coercions I've set up, to me it like all the definitions above should be equivalent
Note
Changing the type of xfree to disj_vars (judge x t) g also fixes the error. This seems odd too, since to be able to apply disj_vars to j := (judge x t), it first needs to be coerced to a ty_ctx via cons j nil, then to a VarSet via bound_variables, which should produce a VarSet containing only x (which is equivalent to VarSet.singleton x?). So this coercion chain seems to go off without a hitch, while the other one fails even though it's simpler

If you use Set Printing Coercions., the error message will be much more informative about the problem:
The term "xfree" has type "disj_vars (var_to_varset x) (bound_variables g)"
while it is expected to have type
"disj_vars (bound_variables (coerce_judgement_to_ty_ctx (judge x t)))
(bound_variables g)"
The problem is that the coercion of x into a VarSet.t is equal to Var.singleton x, while the coercion in judge reduces to VarSet.union (VarSet.singleton x) VarSet.empty. While these two are propositionally equal, they are not judgmentally equal, so as far as Coq is concerned, the term it came up with is ill-typed.

Related

What does the term "?T#{x:=t}", or a type with a question mark and at sign surrounding it mean in Coq?

I'm trying to write a function which removes the zeros from a list. Here is the first try of my implementation.
Require Import Nat.
Require Import List.
Fixpoint shrink (x : list nat) list nat := (* Mistake! Needs a : list nat *)
match x with
| nil => nil
| h :: t => if h =? 0 then shrink t else (h :: shrink t)
end.
However, I get this error:
Error:
In environment
shrink : forall (x : Datatypes.list Datatypes.nat)
(list0 : ?T) (nat : ?T0#{list:=list0}),
Datatypes.list ?T1#{x:=x; list:=list0; x1:=x}
x : list nat
list : ?T
nat : ?T0
h : Datatypes.nat
t : Datatypes.list Datatypes.nat
The term "shrink t" has type
"forall (list0 : ?T#{x:=t}) (nat : ?T0#{x:=t; list:=list0}),
Datatypes.list ?T1#{x:=t; list:=list0; x1:=t}"
while it is expected to have type "Datatypes.list ?T1#{x1:=h :: t}".
The correct function implementation is this:
Fixpoint shrink (x : list nat) : list nat :=
match x with
| nil => nil
| h :: t => if h =? 0 then shrink t else (h :: shrink t)
end.
But how am I supposed to interpret the error, in particular (list0 : ?T#{x:=t})? In particular,
Why is it list0 instead of list?
What does ? mean before the T?
What does the #{ ... } mean after the T?
For your first point, this is just a printing thing but essentially local variables names are just hints for Coq and it may not respect them to avoid confusion. Here it's probably because of the list := list0 we see later.
Letters preceded by ? are existential variables or evars, used for unification. Here it doesn't know what the type of list0 should be because you did not give any, but it knows it has to be something. So for now it's ?T and it will try to figure out later what it should be by looking at its uses.
For nat it's the same, but it also knows it might depend on some list and in this case its value should be list0 so it does the instantiation ?T0{list:=list0}. This notation is for substitution in evars.
I invite you to look at the documentation of evars in the manual to know more.

Retrieving constraints from GADT to ensure exhaustion of pattern matching in Coq

Let's define two helper types:
Inductive AB : Set := A | B.
Inductive XY : Set := X | Y.
Then two other types that depend on XY and AB
Inductive Wrapped : AB -> XY -> Set :=
| W : forall (ab : AB) (xy : XY), Wrapped ab xy
| WW : forall (ab : AB), Wrapped ab (match ab with A => X | B => Y end)
.
Inductive Wrapper : XY -> Set :=
WrapW : forall (xy : XY), Wrapped A xy -> Wrapper xy.
Note the WW constructor – it can only be value of types Wrapped A X and Wrapped B Y.
Now I would like to pattern match on Wrapper Y:
Definition test (wr : Wrapper Y): nat :=
match wr with
| WrapW Y w =>
match w with
| W A Y => 27
end
end.
but I get error
Error: Non exhaustive pattern-matching: no clause found for pattern WW _
Why does it happen? Wrapper forces contained Wrapped to be A version, the type signature forces Y and WW constructor forbids being A and Y simultaneously. I don't understand why this case is being even considered, while I am forced to check it which seems to be impossible.
How to workaround this situation?
Let's simplify:
Inductive MyTy : Set -> Type :=
MkMyTy : forall (A : Set), A -> MyTy A.
Definition extract (m : MyTy nat) : nat :=
match m with MkMyTy _ x => S x end.
This fails:
The term "x" has type "S" while it is expected to have type "nat".
wat.
This is because I said
Inductive MyTy : Set -> Type
This made the first argument to MyTy an index of MyTy, as opposed to a parameter. An inductive type with a parameter may look like this:
Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.
Parameters are named on the left of the :, and are not forall-d in the definition of each constructor. (They are still present in the constructors' types outside of the definition: cons : forall (A : Type), A -> list A -> list A.) If I make the Set a parameter of MyTy, then extract can be defined:
Inductive MyTy (A : Set) : Type :=
MkMyTy : A -> MyTy A.
Definition extract (m : MyTy nat) : nat :=
match m with MkMyTy _ x => S x end.
The reason for this is that, on the inside, a match ignores anything you know about the indices of the scrutinee from the outside. (Or, rather, the underlying match expression in Gallina ignores the indices. When you write a match in the source code, Coq tries to convert it into the primitive form while incorporating information from the indices, but it often fails.) The fact that m : MyTy nat in the first version of extract simply did not matter. Instead, the match gave me S : Set (the name was automatically chosen by Coq) and x : S, as per the constructor MkMyTy, with no mention of nat. Meanwhile, because MyTy has a parameter in the second version, I actually get x : nat. The _ is really a placeholder this time; it is mandatory to write it as _, because there's nothing to match, and you can Set Asymmetric Patterns to make it disappear.
The reason we distinguish between parameters and indices is because parameters have a lot of restrictions—most notably, if I is an inductive type with parameters, then the parameters must appear as variables in the return type of each constructor:
Inductive F (A : Set) : Set := MkF : list A -> F (list A).
(* ^--------^ BAD: must appear as F A *)
In your problem, we should make parameters where we can. E.g. the match wr with Wrap Y w => _ end bit is wrong, because the XY argument to Wrapper is an index, so the fact that wr : Wrapper Y is ignored; you would need to handle the Wrap X w case too. Coq hasn't gotten around to telling you that.
Inductive Wrapped (ab : AB) : XY -> Set :=
| W : forall (xy : XY), Wrapped ab xy
| WW : Wrapped ab (match ab with A => X | B => Y end).
Inductive Wrapper (xy : XY) : Set := WrapW : Wrapped A xy -> Wrapper xy.
And now your test compiles (almost):
Definition test (wr : Wrapper Y): nat :=
match wr with
| WrapW _ w => (* mandatory _ *)
match w with
| W _ Y => 27 (* mandatory _ *)
end
end.
because having the parameters gives Coq enough information for its match-elaboration to use information from Wrapped's index. If you issue Print test., you can see that there's a bit of hoop-jumping to pass information about the index Y through the primitive matchs which would otherwise ignore it. See the reference manual for more information.
The solution turned out to be simple but tricky:
Definition test (wr : Wrapper Y): nat.
refine (match wr with
| WrapW Y w =>
match w in Wrapped ab xy return ab = A -> xy = Y -> nat with
| W A Y => fun _ _ => 27
| _ => fun _ _ => _
end eq_refl eq_refl
end);
[ | |destruct a]; congruence.
Defined.
The issue was that Coq didn't infer some necessary invariants to realize that WW case is ridiculous. I had to explicitly give it a proof for it.
In this solution I changed match to return a function that takes two proofs and brings them to the context of our actual result:
ab is apparently A
xy is apparently Y
I have covered real cases ignoring these assumptions, and I deferred "bad" cases to be proven false later which turned to be trivial. I was forced to pass the eq_refls manually, but it worked and does not look that bad.

A simple case of universe inconsistency

I can define the following inductive type:
Inductive T : Type -> Type :=
| c1 : forall (A : Type), A -> T A
| c2 : T unit.
But then the command Check (c1 (T nat)) fails with the message: The term T nat has type Type#{max(Set, Top.3+1)} while it is expected to have type Type#{Top.3} (universe inconsistency).
How can I tweak the above inductive definition so that c1 (T nat) does not cause a universe inconsistency, and without setting universe polymorphism on?
The following works, but I would prefer a solution without adding equality:
Inductive T (A : Type) : Type :=
| c1 : A -> T A
| c2' : A = unit -> T A.
Definition c2 : T unit := c2' unit eq_refl.
Check (c1 (T nat)).
(*
c1 (T nat)
: T nat -> T (T nat)
*)
Let me first answer the question of why we get the universe inconsistency in the first place.
Universe inconsistencies are the errors that Coq reports to avoid proofs of False via Russell's paradox, which results from considering the set of all sets which do not contain themselves.
There's a variant which is more convenient to formalize in type theory called Hurken's Paradox; see Coq.Logic.Hurkens for more details. There is a specialization of Hurken's paradox which proves that no type can retract to a smaller type. That is, given
U := Type#{u}
A : U
down : U -> A
up : A -> U
up_down : forall (X:U), up (down X) = X
we can prove False.
This is almost exactly the setup of your Inductive type. Annotating your type with universes, you start with
Inductive T : Type#{i} -> Type#{j} :=
| c1 : forall (A : Type#{i}), A -> T A
| c2 : T unit.
Note that we can invert this inductive; we may write
Definition c1' (A : Type#{i}) (v : T A) : A
:= match v with
| c1 A x => x
| c2 => tt
end.
Lemma c1'_c1 (A : Type#{i}) : forall v, c1' A (c1 A v) = v.
Proof. reflexivity. Qed.
Suppose, for a moment, that c1 (T nat) typechecked. Since T nat : Type#{j}, this would require j <= i. If it gave us that j < i, then we would be set. We could write c1 Type#{j}. And this is exactly the setup for the variant of Hurken's that I mentioned above! We could define
u = j
U := Type#{j}
A := T Type#{j}
down : U -> A := c1 Type#{j}
up : A -> U := c1' Type#{j}
up_down := c1'_c1 Type#{j}
and hence prove False.
Coq needs to implement a rule for avoiding this paradox. As described here, the rule is that for each (non-parameter) argument to a constructor of an inductive, if the type of the argument has a sort in universe u, then the universe of the inductive is constrained to be >= u. In this case, this is stricter than Coq needs to be. As mentioned by SkySkimmer here, Coq could recognize arguments which appear directly in locations which are indices of the inductive, and disregard those in the same way that it disregards parameters.
So, to finally answer your question, I believe the following are your only options:
You can Set Universe Polymorphism so that in T (T nat), your two Ts take different universe arguments. (Equivalently, you can write Polymorphic Inductive.)
You can take advantage of how Coq treats parameters of inductive types specially, which mandates using equality in your case. (The requirement of using equality is a general property of going from indexed inductive types to parameterized inductives types---from moving arguments from after the : to before it.)
You can pass Coq the flag -type-in-type to entirely disable universe checking.
You can fix bug #7929, which I reported as part of digging into this question, to make Coq handle arguments of constructors which appear in index-position in the inductive in the same way it handles parameters of inductive types.
(You can find another edge case of the system, and manage to trick Coq into ignoring the universes you want to slip past it, and probably find a proof of False in the process. (Possibly involving module subtyping, see, e.g., this recent bug in modules with universes.))

Coq type error when matching with type family

I’m trying to re-implement an example from CPDT from memory. I wrote:
Inductive myType : Set := MyNat | MyBool.
Definition typeDenote (t : myType) : Set :=
match t with
| MyNat => nat
| MyBool => bool
end.
Inductive unaryOp : myType -> myType -> Set :=
| Twice : unaryOp MyNat MyNat.
Definition twice (n:nat) : nat := n + n.
Definition tunaryDenote (a b : myType) (t : unaryOp a b)
: typeDenote a -> typeDenote b :=
match t with
| Twice => twice
end.
The resulting error is:
Toplevel input, characters 125-130
> | Twice => twice
> ^^^^^
Error: In environment
a : myType
b : myType
t : unaryOp a b
The term "twice" has type "nat -> nat" while it is expected to have type
"forall H : typeDenote ?141, typeDenote ?142"
I don’t understand this error message. I would think that once the match on Twice : unaryOp MyNat MyNat succeeds, Coq infers that a and b are MyNats, and thus typeDenote a -> typeDenote b ≡ nat -> nat, making twice a perfectly fine candidate for the return value. Where’d I go wrong?
Just like #AntonTrunov said, it is typechecked without any issue on my Coq 8.5pl1. However if you need to add some extra annotations for your version to accept the function, you want to have a look at this section of the manual to figure out what to do.
My guess is that you want to have a match ... in ... return ... with to say that the return type should be refined by the information obtained by matching t at the type unaryOp a b (indeed: a and b will take concrete values in the Twice branch).
This is the definition you get using that technique:
Definition tunaryDenote (a b : myType) (t : unaryOp a b)
: typeDenote a -> typeDenote b :=
match t in unaryOp a b return typeDenote a -> typeDenote b with
| Twice => twice
end.
I think that the answer is that Coq's type inference is limited, and does not do the reasoning you want it to do.
Coq's type inference does not do arbitrary calculation but simple unification. It looks at twice, understand that it is nat->nat and concludes that it is not (syntactically) of the form typeDenote a -> TypeDenote b.
If it was doing calculation, it was likely to be non-terminating, since its type system is very sophisticated so you can encode non-trivial computation there.
I tried a newer version of Coq, and like others have said, it typechecks without issue on Coq 8.5. :)

Using List remove function

I'm trying to use the list remove function in Coq standard library but it asks for a bizarre typing and I don't know how to solve.
The function I'm implementing is to make a list of free variables in a lambda term as follows:
Fixpoint fv (t : trm) : vars :=
match t with
| Var v => [v]
| App t1 t2 => (fv t1) ++ (fv t2)
| Abs x t' => remove x (fv t')
end.
And it gives me the following error:
Error: In environment
fv : trm -> vars
t : trm
x : nat
t' : trm
The term "x" has type "nat" while it is expected to have type
"forall x0 y : ?171, {x0 = y} + {x0 <> y}".
I'm pretty sure there is something to do with that hyphotesis thing in the definition of the remove function. I have no idea how to deal with it though, any helps?
remove is defined in a context containing:
Hypothesis eq_dec : forall x y : A, {x = y}+{x <> y}.
The function removes takes this as a first argument (which you can see by doing Print remove.)
This hypothesis is a function deciding equality of elements of the type in your list. In your case, you will have to provide a function to decide equality of var (which seems to be nat, so there is probably such a function in the standard library too).
If you do not know the "{p} + {q}" notation, you can look it up here:
http://coq.inria.fr/library/Coq.Init.Specif.html#sumbool