Mongo update on all documents slow - mongodb

I have a simple query that I want to run on two different collections (each collection has around 50K records) :
db.collectionA.updateMany({}, { $mul: { score: 0.3 } });
db.collectionB.updateMany({}, { $mul: { score: 0.8 } });
So basically I want to multiply the field score by a certain amount. On collectionA it takes 2-3s and on collectionB it takes ~50s. I noticed that I don't have any index on the field score on collection A (which is a dynamic field, updated very often) and for some reason I have a composed index with this field on collectionB.
My question is simple, why does it take so much time for mongo to execute this query and what can I do to make it faster ?
Thanks

I think you have answered the question yourself: there is an index on that field in the second collection, and on changing the value in a document, that index needs recalculation. You could try to drop that index and re-create it after the update has finished

Related

In MongoDB how to decide for a collection which fields to be indexed for a costly query

I have a collection with 1000+ records and I need to run the query below. I have come across the issue that this query takes more than a minute even if the departmentIds array has length something like 15-20. I think if I use an index the query time will be reduced.
From what I observe the 99% of the time spent on the query is due to the $in part.
How do I decide which fields to index. Should I index only department.department_id since that's what taking most time or should I create a compound index using userId,something and department.department_id (bascially all the fields I'm using in the query here)
Here is what my query looks like
let departmentIds = [.......................... can be large]
let query = {
userId: someid,
something: something,
'department.department_id': {
$in: departmentIds
}
};
//db query
let result = db
.collection(TABLE_NAME)
.find(query)
.project({
anotherfield: 1,
department: 1
})
.toArray();
You need to check all search cases and create indexes for those that are often used and most critical for your application. For the particular case above this seems to be the index options:
userId:1
userId:1,something:1
userId:1,something:1,department.department_id:1
I bet on option 1 since userId sounds like a unique key with high selectivity very suitable for index , afcourse best is to do some testing and identify the fastest options , there is good explain option that can help alot with the testing:
db.collection.find().explain("executionStats")

Mongodb LookUp Poor Performance

var product = db.GetCollection<Product>("Product");
var lookup1 = new BsonDocument(
"$lookup",
new BsonDocument {
{ "from", "Variant" },
{ "localField", "Maincode" },
{ "foreignField", "Maincode" },
{ "as", "variants" }
}
);
var pipeline = new[] { lookup1};
var result = product.Aggregate<Product>(pipeline).ToList();
The data of collection a is very large so it takes me 30 seconds to put the data in the list.
What should I do to make a faster lookup?
What that query is doing is retrieving every document from the Product collection, and then for each document found, perform a find query in the Variant collection. If there is no index on the Maincode field in the Variant collection, it will be reading the entire collection for each document.
This means that if there are, say, 1000 total products, with 3000 total variants (3 per product, on average), this query will be reading all 1000 documents from Product, and if that index isn't there, it would read all 3000 documents from Variant 1000 times, i.e. it will be examining 3 million documents.
Some ways to possibly speed this up:
create an index on {Maincode:1} in the Variant collection
This will reduce the number of documents that must be read in order to complete the lookup
change the schema
If the variants are stored in the same document with the product, there is no need for a lookup
filter the products prior to lookup
Again, reducing the documents read during the lookup
use a cursor to retrieve the documents in batches
If you perform any necessary sorting first, and the lookup last, you can return the documents to the application in batches, which would allow the application to display or begin processing the first batch before the second batch is available. This doen't make the query itself faster, but it can reduced the perceived wait in the application.

How to efficiently page batches of results with MongoDB

I am using the below query on my MongoDB collection which is taking more than an hour to complete.
db.collection.find({language:"hi"}).sort({_id:-1}).skip(5000).limit(1)
I am trying to to get the results in a batch of 5000 to process in either ascending or descending order for documents with "hi" as a value in language field. So i am using this query in which i am skipping the processed documents every time by incrementing the "skip" value.
The document count in this collection is just above 20 million.
An index on the field "language" is already created.
MongoDB Version i am using is 2.6.7
Is there a more appropriate index for this query which can get the result faster?
When you want to sort descending, you should create a multi-field index which uses the field(s) you sort on as descending field(s). You do that by setting those field(s) to -1.
This index should greatly increase the performance of your sort:
db.collection.ensureIndex({ language: 1, _id: -1 });
When you also want to speed up the other case - retrieving sorted in ascending order - create a second index like this:
db.collection.ensureIndex({ language: 1, _id: 1 });
Keep in mind that when you do not sort your results, you receive them in natural order. Natural order is often insertion order, but there is no guarantee for that. There are various events which can cause the natural order to get messed up, so when you care about the order you should always sort explicitly. The only exception to this rule are capped collections which always maintain insertion order.
In order to efficiently "page" through results in the way that you want, it is better to use a "range query" and keep the last value you processed.
You desired "sort key" here is _id, so that makes things simple:
First you want your index in the correct order which is done with .createIndex() which is not the deprecated method:
db.collection.createIndex({ "language": 1, "_id": -1 })
Then you want to do some simple processing, from the start:
var lastId = null;
var cursor = db.collection.find({language:"hi"});
cursor.sort({_id:-1}).limit(5000).forEach(funtion(doc) {
// do something with your document. But always set the next line
lastId = doc._id;
})
That's the first batch. Now when you move on to the next one:
var cursor = db.collection.find({ "language":"hi", "_id": { "$lt": lastId });
cursor.sort({_id:-1}).limit(5000).forEach(funtion(doc) {
// do something with your document. But always set the next line
lastId = doc._id;
})
So that the lastId value is always considered when making the selection. You store this between each batch, and continue on from the last one.
That is much more efficient than processing with .skip(), which regardless of the index will "still" need to "skip" through all data in the collection up to the skip point.
Using the $lt operator here "filters" all the results you already processed, so you can move along much more quickly.

MongoDB select subdocument with aggregation function

I have a mongo DB collection that looks something like this:
{
{
_id: objectId('aabbccddeeff'),
objectName: 'MyFirstObject',
objectLength: 0xDEADBEEF,
objectSource: 'Source1',
accessCounter: {
'firstLocationCode' : 283,
'secondLocationCode' : 543,
'ThirdLocationCode' : 564,
'FourthLocationCode' : 12,
}
}
...
}
Now, assuming that this is not the only record in the collection and that most/all of the documents contain the accessCounter subdocument/field how will I go with selecting the x first documents where I have the most access from a specific location.
A sample "query" will be something like:
"Select the first 10 documents From myCollection where the accessCounter.firstLocationCode are the highest"
So a sample result will be X documents where the accessCounter. will be the greatest is the database.
Thank your for taking the time to read my question.
No need for an aggregation, that is a basic query:
db.collection.find().sort({"accessCounter.firstLocation":-1}).limit(10)
In order to speed this up, you should create a subdocument index on accessCounter first:
db.collection.ensureIndex({'accessCounter':-1})
assuming the you want to do the same query for all locations. In case you only want to query firstLocation, create the index on accessCounter.firstLocation.
You can speed this up further in case you only need the accessCounter value by making this a so called covered query, a query of which the values to return come from the index itself. For example, when you have the subdocument indexed and you query for the top secondLocations, you should be able to do a covered query with:
db.collection.find({},{_id:0,"accessCounter.secondLocation":1})
.sort("accessCounter.secondLocation":-1).limit(10)
which translates to "Get all documents ('{}'), don't return the _id field as you do by default ('_id:0'), get only the 'accessCounter.secondLocation' field ('accessCounter.secondLocation:1'). Sort the returned values in descending order and give me the first ten."

MongoDB MongoEngine index declaration

I have Document
class Store(Document):
store_id = IntField(required=True)
items = ListField(ReferenceField(Item, required=True))
meta = {
'indexes': [
{
'fields': ['campaign_id'],
'unique': True
},
{
'fields': ['items']
}
]
}
And want to set up indexes in items and store_id, does my configuration right?
Your second index declaration looks like it should do what you want. But to make sure that the index is really effective, you should use explain. Connect to your database with the mongo shell and perform a find-query which should use that index followed by .explain(). Example:
db.yourCollection.find({items:"someItem"}).explain();
The output will be a document with lots of fields. The documentation explains what exactly each field means. Pay special attention to these fields:
millis Time in milliseconds the query required
indexOnly (self-explaining)
n number of returned documents
nscannedObjects the number of objects which had to be examined without using an index. For an index-only query this should be equal to n. When it is higher, it means that some documents could not be excluded by an index and had to be scanned manually.