assign derivative to function in Maple - maple

I have a situation in Maple, where a large expression is calculated. In that expression a derivative appears, say $$\frac{\partial}{\partial x} f(x,t)$$. I know the function
$$\frac{\partial}{\partial x} f(x,t)$$
but I do not know the function f (and integrating makes the problem excessively difficult, it is not worth to explain the details). Here is my question: how can I get maple to replace $$\frac{\partial}{\partial x} f(x,t)$$ with my known function? A naive assignment such as
$$\frac{\partial}{\partial x} f(x,t):= expression$$
does not work.

It is using the subs command
https://www.maplesoft.com/support/help/Maple/view.aspx?path=subs
such as
subs( $$\frac{\partial}{\partial x} f(x,t)$$=known function, expression)

Related

Write recursive sub-functions and non-recursive sub-functions in Matlab

I'm newbie to Matlab
I have an assignment :
Legendre polynomial Pn(x), n=0,1,2,. . . The recursive formula of is
Write recursive sub-functions and non-recursive sub-functions separately to find the value of the Legendre polynomial function
This is my code :
function P =Legendre(n,x)
syms x;
n = input('n=');
if n==0
P=1;
elseif n==1
P=x;
elseif n>=2
P=((2*n-1)/n)*x*Legendre(n-1)-((n-1)/n)*Legendre(n-2);
end
end
But I get an error message:
Unrecognized function or variable 'Legendre'.
Error in ti4 (line 9)
P=((2*n-1)/n)*x*Legendre(n-1)-((n-1)/n)*Legendre(n-2);
Sorry for the stupid question. Can anyone help me? Thank u so much
A few things are probably going on here.
File name needs to match function name (for the primary function)
In your case, the filename needs to be Legendre.m.
Symbolic toolbox OR do you want an answer
for most uses of this function, I would leave two full inputs, just as you have them. Bur I would remove the first two lines completely.
As it is, the first two lines will break your inputs. The value for n is reset by the input function. I'm actually not sure what happens when you declare an existing variable x, to a sym.
Input consistency
You are setting up a function with two inputs, named n and x. But when you maek your recursive calls you only pass in one variable. The easiest thing to do here is simply keep passing n in as the first input.
(Right now, you are trying to pass in x in the recursive calls, but it will be interpreted as n.)

How to define custom functions in Maple?

I'm new to Maple and I'm looking for a simple way to automate some tasks. In particular, I'm looking for a way to define custom "action" that perform some steps automatically.
As as an example I would like to define a quick way to compute the determinant of the Hessian of a polynomial. Currently the way I do this is opening Maple, create a new worksheet than performing the following commands:
p := (x, y) -> x^2*y + 3*x^3 + y^3
with(VectorCalculus):
h := Hessian(p(x, y), [x, y])
Determinant(h)
What I would like to do is to compute the hessian determinant directly with something like
HessDet(p)
where HessDet would be a custom command that performs the operations above. How does one achieve something like this in Maple?
First things first: The value assigned to your p is a procedure which can return a polynomial expression, but not itself a polynomial. It's important not to muddle expressions and procedures. Doing so is a common cause of problems for new users.
Being able to throw around p(x,y) may be visually pleasing to your eye, but it serves little programmatic purpose here. The fact that the formal parameters of procedure p happen to be called x and y, along with the fact that you called procedure p with arguments x and y, is actually just another common source of confusion. Don't create procedures merely to call them in this way.
Also, your call p(x,y) makes it look magic that your code snippet "knows" how many arguments would be required by procedure p. So it's already a muddle to have your candidate HessDet accept p as a procedure.
So instead let's keep it straightforward, by writing HessDet to accept a polynomial rather than a procedure. We can programmatically ascertain the names in which this expression of of type polynom.
restart;
HessDet:=proc(p::algebraic)
local H,vars;
vars:=indets(p,
And(name,Non(constant),
satisfies(u->type(p,polynom(anything,u)))));
H:=VectorCalculus:-Hessian(p,[vars[]]);
LinearAlgebra:-Determinant(H);
end proc:
Now some examples of using it,
P := x^2*y + 3*x^3 + y^3;
HessDet(P);
p := (x, y) -> x^2*y + 3*x^3 + y^3;
HessDet(p(x,y));
HessDet(x^3-x^2+4*x);
HessDet(s^2*t + 3*s^3 + t^3);
HessDet(s[r]^2*t[r] + 3*s[r]^3 + t[r]^3);
You might also wonder how you could re-use this custom procedure across sessions, without having to type it in each time. Two reasonable ways are:
Put the (above) defining plaintext definition of HessDet inside a personal initialization file.
Create a (.mla) Maple Library Archive file, then Save your HessDet to that, and then augment the Library search path in your initialization file.
It might look like 2) is more effort, but only the Save step is needed for repeats, and you can store many custom procedures to the same archive. Your choice...
[edit] The OP has asked for clarification of the first part of the above procedure HessDet, which I suspect means the call to indets.
If P is assigned an expression then then the call indets(P,name) will return a set of all the names present in that expression. Basically, it returns the set of all indeterminate subexpressions of the expression which are of type name in Maple's technical sense.
For example,
P := x*y + sin(a*Pi)*x;
x y + sin(a Pi) x
indets( P,
name );
{Pi, a, x, y}
Perhaps the name of the constant Pi is not wanted here. Ie,
indets( P,
And( name,
Non(constant) ) );
{a, x, y}
Perhaps we want only the non-constant names in which the expression is a polynomial? Ie,
indets( P,
And( name,
Non(constant),
satisfies(u->type(p,polynom(anything,u))) ) );
{x, y}
That last result is an advanced way of using the following tests:
type(P, polynom(anything, x));
true
type(P, polynom(anything, y));
true
type(P, polynom(anything, a));
false
A central issue here is that the OP made no mention of what kind of polynomials are to be handled by the custom procedure. So I guessed with some defensive coding, in hope of less surprises later on. The original Question states that the input could be a "polynomial", but we weren't told what kind of coefficients there might be.
Perhaps the coefficients will always be real and exact or numeric. Perhaps the custon procedure should throw an error when not supplied such. These details weren't mentioned in the Question.

Maxima simplify expression with diff

Let's assume a is a constant and x is my variable with respect to time, so basically x(t).
Then in Maxima , what is the best way to replace 'diff(a*x,t) with a*'diff(x,t) automatically without use subst command.
The reason I don't to use subst is that I have many variables and higher order derivatives. It is not efficient to use subst to replace all the occurrences.
Thanks.
UPDATE
I have tried with depends(x,t) command, but it only works with the simple case. Here is an minimal example of my situation.
depends([x,y],t);
eq1:diff(x,t)-b=c;
eq2:subst([x=a*y],eq1);
sol_dy=solve(eq2,diff(y,t))
Of course here a,b,c are constants and x, y are variables on t.
Maxima can not solve diff(y,t) directly. How do deal with it?
I see that 'diff(...) (i.e. derivative noun expression) isn't linear (doesn't distribute over + and doesn't factor out constants) but diff(...) (verb expression) is linear. That's a misfeature, at least.
I was going to suggest declare(nounify(diff), linear) but that makes derivatives come out as 0 in your example ... this is probably a bug, I'll have to think more about it.
Try ev(eq2, nouns); to re-evaluate the derivatives as verbs -- I think that should cause the constant to factor out.

Matlab symbolic function conversion without dot for matrix operation

When converting symbolic expression to matlabFunction, expression like
x=sym('x')
f=- x^3/6 + x
g=matlabFunction(f)
-> #(x)x-x.^3.*(1.0./6.0)
which is not what I want because x is gonna be a matrix and my application requires actual matrix multiplication such as x^3 instead of the dot product form of x.^3
The only way to get it working is to use anonymous function, i.e.
g=#(x) - x^3/6 + x
->#(x)-x^3/6+x
However, the issue with anonymous function is that I cannot use substitution but to type the entire formulation, i.e.
g=#(x) f
-> #(x)f which shows that expression substitution does not work
In short, I will need to solve either one of the technical difficulties: (1) If I use matlabFunction, how do I remove all the dot after the conversion? or (2) If I use anonymous function, how do I bypass typing the symbolic expression if I have already defined 'f' for the expression?
I am totally lost here and I hope someone familiar with matlab can give me 2 cents.
Thank you!
You can convert the sym object to a string when calculating the anonymous function:
g=#(x)eval(char(f))
Alternatively, you can use the following code
h=eval(['#(x)' char(f)])
instead of matlabFunction

using ode45 to solve y'=y adnd y'=t in Matlab

I first defined functions for dy/dt=y and dy/dt=t:
function dy=d(y):
dy=y
end
function ddy=dd(t):
ddy=t
end
And then I used ode45, respectively:
[t,y]=ode45('d',[1 10],1)
[t,y]=ode45('dd',[1 10],1)
which returns the following error: Error using d
Too many input arguments.
My question is:
Where did I go wrong?
How does Matlab know whether y or t is the independent variable? When I define the first function, it could be reasonably interpreted as dt/dy=y instead of dy/dt=y. Is there a built-in convention for defining functions?
First things first: the docs on ode45 are on the mathworks website, or you can get them from the console by entering help ode45.
The function you pass in needs to take two variables, y then t. As you noticed, with just one it would be impossible to distinguish a function of only y from a function of only t. The first argument has to be the independent, the second is the dependent.
Try defining your function as dy = d(t, y) and ddy = dd(t, y) with the same bodies.
one other note, while using a string representing the function name should work, you can use #d and #dd to reference the functions directly.