Proving General Associativity in Groups - coq

For a project I'm coding group theory through Coq, obviously associatvity of 3 elements is a given, however I'm struggling to prove it holds for a string of length n. That is, (x1 * ... * xn) is always the same regardless of how many brackets are in there, or there placement.
The relevant group code is
Structure group :=
{
e : G;
Op : G -> G -> G;
Inv : G -> G;
Associativity : forall (x y z : G), Op x (Op y z) = Op (Op x y) z;
LeftInverse : forall (x : G), Op (Inv x) x = e;
LeftIdentity : forall (x : G), Op e x = x;
}.
It's not the proof itself I have the issue with but how to code it. I can see at the very least I'll need a further function that allows me to operate on strings rather than just elements, but i've no idea how to get started. Any pointers?

Operating on strings directly is certainly possible, but cumbersome. When reasoning about languages, it is much more convenient to use abstract syntax trees instead. For your statement, we only want to consider combinations of elements with some binary operation, so a binary tree suffices:
Inductive tree T :=
| Leaf : T -> tree T
| Node : tree T -> tree T -> tree T.
For concreteness, I'll only consider the natural numbers under addition, but this generalizes to any other monoid (and thus any other group). We can write a function that sums all the elements of a tree:
Fixpoint sum_tree t : nat :=
match t with
| Leaf n => n
| Node t1 t2 => sum_tree t1 + sum_tree t2
end.
We can also write a function that flattens the tree, collecting all of its elements in a list
Fixpoint elements {T} (t : tree T) : list T :=
match t with
| Leaf x => [x]
| Node t1 t2 => elements t1 ++ elements t2
end.
With these ingredients, we can formulate the statement that you were looking for: if two trees (that is, two ways of putting parenthesis in an expression) have the same sequences of elements, then they must add up to the same number.
Lemma eq_sum_tree t1 t2 :
elements t1 = elements t2 -> sum_tree t1 = sum_tree t2.
I'll leave the proof of this statement to you. ;)

Related

Characteristic function of a union

In a constructive setting such as Coq's, I expect the proof of a disjunction A \/ B to be either a proof of A, or a proof of B. If I reformulate this on subsets of a type X, it says that if I have a proof that x is in A union B, then I either have a proof that x is in A, or a proof that x is in B. So I want to define the characteristic function of a union by case analysis,
Definition characteristicUnion (X : Type) (A B : X -> Prop)
(x : X) (un : A x \/ B x) : nat.
It will be equal to 1 when x is in A, and to 0 when x is in B. However Coq does not let me destruct un, because "Case analysis on sort Set is not allowed for inductive definition or".
Is there another way in Coq to model subsets of type X, that would allow me to construct those characteristic functions on unions ? I do not need to extract programs, so I guess simply disabling the previous error on case analysis would work for me.
Mind that I do not want to model subsets as A : X -> bool. That would be unecessarily stronger : I do not need laws of excluded middle such as "either x is in A or x is not in A".
As pointed out by #András Kovács, Coq prevents you from "extracting" computationally relevant information from types in Prop in order to allow some more advanced features to be used. There has been a lot of research on this topic, including recently Univalent Foundations / HoTT, but that would go beyond the scope of this question.
In your case you want indeed to use the type { A } + { B } which will allow you to do what you want.
I think the union of subsets should be a subset as well. We can do this by defining union as pointwise disjunction:
Definition subset (X : Type) : Type := X -> Prop.
Definition union {X : Type}(A B : subset X) : subset X := fun x => A x \/ B x.

Messing around with category theory

Motivation: I am attempting to study category theory while creating a Coq formalization of the ideas I find in whatever textbook I follow. In order to make this formalization as simple as possible, I figured I should identify objects with their identity arrow, so a category can be reduced to a set (class, type) of arrows X with a source mapping s:X->X, target mapping t:X->X, and composition mapping product : X -> X -> option X which is a partial mapping defined for t f = s g. Obviously the structure (X,s,t,product) should follow various properties. For the sake of clarity, I am spelling out the formalization I chose below, but there is no need to follow it I think in order to read my question:
Record Category {A:Type} : Type := category
{ source : A -> A
; target : A -> A
; product: A -> A -> option A
; proof_of_ss : forall f:A, source (source f) = source f
; proof_of_ts : forall f:A, target (source f) = source f
; proof_of_tt : forall f:A, target (target f) = target f
; proof_of_st : forall f:A, source (target f) = target f
; proof_of_dom: forall f g:A, target f = source g <-> product f g <> None
; proof_of_src: forall f g h:A, product f g = Some h -> source h = source f
; proof_of_tgt: forall f g h:A, product f g = Some h -> target h = target g
; proof_of_idl: forall a f:A,
a = source a ->
a = target a ->
a = source f ->
product a f = Some f
; proof_of_idr: forall a f:A,
a = source a ->
a = target a ->
a = target f ->
product f a = Some f
; proof_of_asc:
forall f g h fg gh:A,
product f g = Some fg ->
product g h = Some gh ->
product fg h = product f gh
}
.
I have no idea how practical this is and how far it will take me. I see this as an opportunity to learn category theory and Coq at the same time.
Problem: My first objective was to create a 'Category' which would resemble as much as possible the category Set. In a set theoretic framework, I would probably consider the class of triplets (a,b,f) where f is a map with domain a and range a subset of b. With this in mind I tried:
Record Arrow : Type := arrow
{ dom : Type
; cod : Type
; arr : dom -> cod
}
.
So that Arrow becomes my base type on which I could attempt building a structure of category. I start embedding Type into Arrow:
Definition id (a : Type) : Arrow := arrow a a (fun x => x).
which allows me to define the source and target mappings:
Definition domain (f:Arrow) : Arrow := id (dom f).
Definition codomain (f:Arrow) : Arrow := id (cod f).
Then I move on to defining a composition on Arrow:
Definition compose (f g: Arrow) : option Arrow :=
match f with
| arrow a b f' =>
match g with
| arrow b' c g' =>
match b with
| b' => Some (arrow a c (fun x => (g' (f' x))))
| _ => None
end
end
end.
However, this code is illegal as I get the error:
The term "f' x" has type "b" while it is expected to have type "b'".
Question: I have the feeling I am not going to get away with this, My using Type naively would take me to some sort of Russel paradox which Coq will not allow me to do. However, just in case, is there a way to define compose on Arrow?
Your encoding does not work in plain Coq because of the constructive nature of the theory: it is not possible to compare two sets for equality. If you absolutely want to follow this approach, Daniel's comment sketches a solution: you need to assume a strong classical principle to be able to check whether the endpoints of two arrows match, and then manipulate an equality proof to make Coq accept the definition.
Another approach is to have separate types for arrows and objects, and use type dependency to express the compatibility requirement on arrow endpoints. This definition requires only three axioms, and considerably simplifies the construction of categories:
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Record category : Type := Category {
obj : Type;
hom : obj -> obj -> Type;
id : forall {X}, hom X X;
comp : forall X Y Z, hom X Y -> hom Y Z -> hom X Z;
(* Axioms *)
idL : forall X Y (f : hom X Y), comp id f = f;
idR : forall X Y (f : hom X Y), comp f id = f;
assoc : forall X Y Z W
(f : hom X Y) (g : hom Y Z) (h : hom Z W),
comp f (comp g h) = comp (comp f g) h
}.
We can now define the category of sets and ask Coq to automatically prove the axioms for us.
Require Import Coq.Program.Tactics.
Program Definition Sets : category := {|
obj := Type;
hom X Y := X -> Y;
id X := fun x => x;
comp X Y Z f g := fun x => g (f x)
|}.
(This does not lead to any circularity paradoxes, because of Coq's universe mechanism: Coq understands that the Type used in this definition is actually smaller than the one used to define category.)
This encoding is sometimes inconvenient due to the lack of extensionality in Coq's theory, because it prevents certain axioms from holding. Consider the category of groups, for example, where the morphisms are functions that commute with the group operations. A reasonable definition for these morphisms could be as follows (assuming that there is some type group representing groups, with * denotes multiplication and 1 denotes the neutral element).
Record group_morphism (X Y : group) : Type := {
mor : X -> Y;
mor_1 : mor 1 = 1;
mor_m : forall x1 x2, mor (x1 * x2) = mor x1 * mor x2
}.
The problem is that the properties mor_1 and mor_m interfere with the notion of equality for elements of group_morphism, making the proofs for associativity and identity that worked for Sets break. There are two solutions:
Adopt extra axioms into the theory so that the required properties still go through. In the above example, you would need proof irrelevance:
proof_irrelevance : forall (P : Prop) (p q : P), p = q.
Change the category axioms so that the identities are valid up to some equivalence relation specific to that category, instead of the plain Coq equality. This approach is followed here, for example.

How does the discriminate tactic work?

I was curious about how the discriminate tactic works behind the curtain. Therefore I did some experiments.
First a simple Inductive definition:
Inductive AB:=A|B.
Then a simple lemma which can be proved by the discriminate tactic:
Lemma l1: A=B -> False.
intro.
discriminate.
Defined.
Let's see what the proof looks like:
Print l1.
l1 =
fun H : A = B =>
(fun H0 : False => False_ind False H0)
(eq_ind A
(fun e : AB => match e with
| A => True
| B => False
end) I B H)
: A = B -> False
This looks rather complicated and I do not understand what is happening here. Therefore I tried to prove the same lemma more explicitly:
Lemma l2: A=B -> False.
apply (fun e:(A=B) => match e with end).
Defined.
Let's again see what Coq has made with this:
Print l2.
l2 =
fun e : A = B =>
match
e as e0 in (_ = a)
return
(match a as x return (A = x -> Type) with
| A => fun _ : A = A => IDProp
| B => fun _ : A = B => False
end e0)
with
| eq_refl => idProp
end
: A = B -> False
Now I am totally confused. This is still more complicated.
Can anyone explain what is going on here?
Let's go over this l1 term and describe every part of it.
l1 : A = B -> False
l1 is an implication, hence by Curry-Howard correspondence it's an abstraction (function):
fun H : A = B =>
Now we need to construct the body of our abstraction, which must have type False. The discriminate tactic chooses to implement the body as an application f x, where f = fun H0 : False => False_ind False H0 and it's just a wrapper around the induction principle for False, which says that if you have a proof of False, you can get a proof of any proposition you want (False_ind : forall P : Prop, False -> P):
(fun H0 : False => False_ind False H0)
(eq_ind A
(fun e : AB => match e with
| A => True
| B => False
end) I B H)
If we perform one step of beta-reduction, we'll simplify the above into
False_ind False
(eq_ind A
(fun e : AB => match e with
| A => True
| B => False
end) I B H)
The first argument to False_ind is the type of the term we are building. If you were to prove A = B -> True, it would have been False_ind True (eq_ind A ...).
By the way, it's easy to see that we can simplify our body further - for False_ind to work it needs to be provided with a proof of False, but that's exactly what we are trying to construct here! Thus, we can get rid of False_ind completely, getting the following:
eq_ind A
(fun e : AB => match e with
| A => True
| B => False
end) I B H
eq_ind is the induction principle for equality, saying that equals can be substituted for equals:
eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y
In other words, if one has a proof of P x, then for all y equal to x, P y holds.
Now, let's create step-by-step a proof of False using eq_ind (in the end we should obtain the eq_ind A (fun e : AB ...) term).
We start, of course, with eq_ind, then we apply it to some x - let's use A for that purpose. Next, we need the predicate P. One important thing to keep in mind while writing P down is that we must be able to prove P x. This goal is easy to achieve - we are going to use the True proposition, which has a trivial proof. Another thing to remember is the proposition we are trying to prove (False) - we should be returning it if the input parameter is not A.
With all the above the predicate almost writes itself:
fun x : AB => match x with
| A => True
| B => False
end
We have the first two arguments for eq_ind and we need three more: the proof for the branch where x is A, which is the proof of True, i.e. I. Some y, which will lead us to the proposition we want to get proof of, i.e. B, and a proof that A = B, which is called H at the very beginning of this answer. Stacking these upon each other we get
eq_ind A
(fun x : AB => match x with
| A => True
| B => False
end)
I
B
H
And this is exactly what discriminate gave us (modulo some wrapping).
Another answer focuses on the discriminate part, I will focus on the manual proof. You tried:
Lemma l2: A=B -> False.
apply (fun e:(A=B) => match e with end).
Defined.
What should be noted and makes me often uncomfortable using Coq is that Coq accepts ill-defined definitions that it internally rewrites into well-typed terms. This allows to be less verbose, since Coq adds itself some parts. But on the other hand, Coq manipulates a different term than the one we entered.
This is the case for your proof. Naturally, the pattern-matching on e should involve the constructor eq_refl which is the single constructor of the eq type. Here, Coq detects that the equality is not inhabited and thus understands how to modify your code, but what you entered is not a proper pattern-matching.
Two ingredients can help understand what is going on here:
the definition of eq
the full pattern-matching syntax, with as, in and return terms
First, we can look at the definition of eq.
Inductive eq {A : Type} (x : A) : A -> Prop := eq_refl : x = x.
Note that this definition is different from the one that seems more natural (in any case, more symmetric).
Inductive eq {A : Type} : A -> A -> Prop := eq_refl : forall (x:A), x = x.
This is really important that eq is defined with the first definition and not the second. In particular, for our problem, what is important is that, in x = y, x is a parameter while y is an index. That is to say, x is constant across all the constructors while y can be different in each constructor. You have the same difference with the type Vector.t. The type of the elements of a vector will not change if you add an element, that's why it is implemented as a parameter. Its size, however, can change, that's why it is implemented as an index.
Now, let us look at the extended pattern-matching syntax. I give here a very brief explanation of what I have understood. Do not hesitate to look at the reference manual for safer information. The return clause can help specify a return type that will be different for each branch. That clause can use the variables defined in the as and in clauses of the pattern-matching, which binds respectively the matched term and the type indices. The return clause will both be interpreted in the context of each branch, substituting the variables of as and in using this context, to type-check the branches one by one, and be used to type the match from an external point of view.
Here is a contrived example with an as clause:
Definition test n :=
match n as n0 return (match n0 with | 0 => nat | S _ => bool end) with
| 0 => 17
| _ => true
end.
Depending on the value of n, we are not returning the same type. The type of test is forall n : nat, match n with | 0 => nat | S _ => bool end. But when Coq can decide in which case of the match we are, it can simplify the type. For example:
Definition test2 n : bool := test (S n).
Here, Coq knows that, whatever is n, S n given to test will result as something of type bool.
For equality, we can do something similar, this time using the in clause.
Definition test3 (e:A=B) : False :=
match e in (_ = c) return (match c with | B => False | _ => True end) with
| eq_refl => I
end.
What's going on here ? Essentially, Coq type-checks separately the branches of the match and the match itself. In the only branch eq_refl, c is equal to A (because of the definition of eq_refl which instantiates the index with the same value as the parameter), therefore we claimed we returned some value of type True, here I. But when seen from an external point of view, c is equal to B (because e is of type A=B), and this time the return clause claims that the match returns some value of type False. We use here the capability of Coq to simplify pattern-matching in types that we have just seen with test2. Note that we used True in the other cases than B, but we don't need True in particular. We only need some inhabited type, such that we can return something in the eq_refl branch.
Going back to the strange term produced by Coq, the method used by Coq does something similar, but on this example, certainly more complicated. In particular, Coq often uses types IDProp inhabited by idProp when it needs useless types and terms. They correspond to True and I used just above.
Finally, I give the link of a discussion on coq-club that really helped me understand how extended pattern-matching is typed in Coq.

Pattern-match on type in order to implement equality for existentially typed constructor in Coq

Let's say I have again a small problem with my datatype with an existential quantified component. This time I want to define when two values of type ext are equal.
Inductive ext (A: Set) :=
| ext_ : forall (X: Set), option X -> ext A.
Fail Definition ext_eq (A: Set) (x y: ext A) : Prop :=
match x with
| ext_ _ ox => match y with
| ext_ _ oy => (* only when they have the same types *)
ox = oy
end
end.
What I'd like to do is somehow distinguish between the cases where the existential type is actually same and where it's not. Is this a case for JMeq or is there some other way to accomplish such a case distinction?
I googled a lot, but unfortunately I mostly stumbled upon posts about dependent pattern matching.
I also tried to generate a (boolean) scheme with Scheme Equality for ext, but this wasn't successful because of the type argument.
What I'd like to do is somehow distinguish between the cases where the existential type is actually same and where it's not.
This is not possible as Coq's logic is compatible with the univalence axiom which says that isomorphic types are equal. So even though (unit * unit) and unit are syntactically distinct, they cannot be distinguished by Coq's logic.
A possible work-around is to have a datatype of codes for the types you are interested in and store that as an existential. Something like this:
Inductive Code : Type :=
| Nat : Code
| List : Code -> Code.
Fixpoint meaning (c : Code) := match c with
| Nat => nat
| List c' => list (meaning c')
end.
Inductive ext (A: Set) :=
| ext_ : forall (c: Code), option (meaning c) -> ext A.
Lemma Code_eq_dec : forall (c d : Code), { c = d } + { c <> d }.
Proof.
intros c; induction c; intros d; destruct d.
- left ; reflexivity.
- right ; inversion 1.
- right ; inversion 1.
- destruct (IHc d).
+ left ; congruence.
+ right; inversion 1; contradiction.
Defined.
Definition ext_eq (A: Set) (x y: ext A) : Prop.
refine(
match x with | #ext_ _ c ox =>
match y with | #ext_ _ d oy =>
match Code_eq_dec c d with
| left eq => _
| right neq => False
end end end).
subst; exact (ox = oy).
Defined.
However this obviously limits quite a lot the sort of types you can pack in an ext. Other, more powerful, languages (e.g. equipped with Induction-recursion) would give you more expressive power.

Inside a branch of a match block, how do I use the assertion that the matched expression is equal to the branch's data constructor expression?

I am trying to develop a programming style that is based on preventing bad input as soon as possible. For example, instead of the following plausible definition for the predecessor function on the natural numbers:
Definition pred1 n :=
match n with
| O => None
| S n => Some n
end.
I want to write it as follows:
Theorem nope n (p : n = O) (q : n <> O) : False.
contradict q.
exact p.
Qed.
Definition pred2 n (q : n <> O) :=
match n with
| S n => n
| O =>
let p := _ in
match nope n p q with end
end.
But I have no idea what to replace _ with. My intuition suggests me that there must be some assumption : n = O available in the | O => branch. Does Coq indeed introduce such an assumption? If so, what is its name?
Coq doesn't automatically introduce such hypothesis, but you can introduce it explicitly by using the full form of the match construction:
Definition pred2 n (q : n <> O) :=
match n as n' return n = n' -> nat with
| S p => fun _ => p
| O => fun Heq => match q Heq with end
end (eq_refl n).
Explanations:
return introduces a type annotation with the type of the whole match ... end expression;
as introduces a variable name that can be used in this type annotation and will be substituted with the left hand side in each branch. Here,
in the first branch, the right hand side has type n = S p -> nat;
in the second branch, the right hand side has type n = O -> nat. Therefore, q Heq has type False and can be matched.
More information in the reference manual, in the chapter on Extended pattern-matching.