The problem: I'm trying to make a query on MongoDB, but I'm using the DocumentDb from amazon, where some operations are no supported. I wanted to find an alternative to get the same result, if possible. Basically I want to change the root of the result, instead of being the first entity, I need it to be some merging of some values in different levels of the document.
So, I have the following structure in my collection:
{
"_id" : ObjectId("5e598bf4d98f7c70f9aa3b58"),
"status" : "active",
"invoices" : [
{
"_id" : ObjectId("5e598bf13b24713f50600375"),
"value" : 1157.52,
"receivables" : [
{
"situation" : {
"status" : "active",
"reason" : []
},
"rec_code" : "001",
"_id" : ObjectId("5e598bf13b24713f50600374"),
"expiration_date" : ISODate("2020-03-25T00:00:00.000Z"),
"value" : 1157.52
}
],
"invoice_code" : 9773,
"buyer" : {
"legal_name" : "test name",
"buyer_code" : "223132165498797"
}
},
],
"seller" : {
"code" : "321654897986",
"name" : "test name 2"
}
}
What I want to achieve is to list all "receivables" like this, where the _id is the _id of the receivable:
[{
"_id" : ObjectId("5e598bf13b24713f50600374"),
"situation" : {
"status" : "active",
"reason" : []
},
"rec_code" : "001",
"expiration_date" : ISODate("2020-03-25T00:00:00.000Z"),
"value" : 1157.52,
"status" : "active",
"seller" : {
"cnpj" : "321654897986",
"name" : "test name 2"
},
"invoice_code" : 9773.0,
"buyer" : {
"legal_name" : "test name",
"cnpj" : "223132165498797"
}
}]
This I can do with $replaceRoot in with the query below on MongoDB, but using documentDB I can't use $replaceRoot or $mergeObjects. Do you know how can I get the same result with other operators?:
db.testCollection.aggregate([
{ $unwind: "$invoices" },
{ $replaceRoot: {
newRoot: {
$mergeObjects: ["$$ROOT","$invoices"]}
}
},
{$project: {"_id": 0, "value": 0, "created_at": 0, "situation": 0}},
{ $unwind: "$receivables" },
{ $replaceRoot: {
newRoot: {
$mergeObjects: ["$receivables", "$$ROOT"]
}
}
},
{$project:{"created_at": 0, "receivables": 0, "invoices": 0}}
])
After going through mongodb operations, I could get a similar result fro what I wanted with the following query without $replaceRoot. It turns out it was a better query, I think:
db.testCollection.aggregate([
{$unwind: "$invoices"},
{$project : {
created_at: 1,
seller: "$seller",
buyer: "$invoices.buyer",
nnf: "$invoices.nnf",
receivable: '$invoices.receivables'
}
},
{$unwind: "$receivable"},
{$project : {
_id: '$receivable._id',
seller: 1,
buyer: 1,
invoice_code: 1,
receivable: 1,
created_at: 1,
}
},
{$sort: {"created_at": -1}},
])
This query resulted in the following structure list:
[{
"created_at" : ISODate("2020-03-06T09:47:26.161Z"),
"seller" : {
"name" : "Test name",
"cnpj" : "21231232131232"
},
"buyer" : {
"cnpj" : "21322132164654",
"legal_name" : "Test name 2"
},
"invoice_code" : 66119,
"receivable" : {
"rec_code" : "001",
"_id" : ObjectId("5e601bb5efff82b92935bad4"),
"expiration_date" : ISODate("2020-03-17T00:00:00.000Z"),
"value" : 6540.7,
"situation" : {
"status" : "active",
"reason" : []
}
},
"_id" : ObjectId("5e601bb5efff82b92935bad4")
}]
Support for $replaceRoot was added to Amazon DocumentDB in January 2021.
Related
I have a collection in mongoDB that looks like this :
db.mycollection.find({})
{
"_id" : ObjectId("5deb4ce4bbe1b67e6e5611e4"),
"site" : "MDC",
"label" : "407",
"status" : "removed"
}
{
"_id" : ObjectId("5def36379ca17632de773d7e"),
"site" : "MDC",
"label" : "407",
"status" : "new"
}
{
"_id" : ObjectId("5df4740eab0d76657c19a7d2"),
"site" : "MDC",
"label" : "408",
"status" : "new"
}
I would like to regroup my documents that have the same value for the field "label" in one document with subdocument of the status, to have something like this :
{
"_id" : ObjectId("5deb4ce4bbe1b67e6e5611e4"),
"site" : "MDC",
"label" : "407",
"status" : [
{
"label" : "new"
},
{
"label" : "removed"
}
]
}
I tried different ways (aggregate, update,..) to do this but it's a complete fail...
You need to $group by label or site in order to $push your statuses:
db.collection.aggregate([
{
$group: {
_id: "$label",
old_id: { $first: "$_id" },
site: { $first: "$site" },
status: { $push: { label: "$status" } }
}
},
{
$project: {
_id: "$old_id",
site: 1,
label: "$_id",
status: 1
}
}
])
Mongo Playground
I want to get document with foreign key by using $lookup and $match on MongoDB.
There is a "Jobs" collection which stores Job document. In Job document there are two field using as foreing key "creatorParent" and "Children".
CreatorParent is a foreign key for "Users" collection and Children array contains id for user's children.
When I list the whole jobs, I want to retrieve detail from "Users" collection for both CreatorParent ID and ChildrenID. I want to marshall "Job" document with ParentDetail and ChildDetail. I don't want to write a custom method for that. Is it possible to handle it with MongoDB query?
By the way I'm beginner on MongoDB so should store needed details on Children and CreatorParent instead of storing ObjectId?
Users document:
{
"_id" : ObjectId("58daf84877733645eaa9b44f"),
"email" : "meto93#gmail.com",
"password" : "vpGl+Fjnef616cRgNbCkwaFDpSI=",
"passwordsalt" : "99397F4A9D3A499D96694547667E74595CE994D2E83345D6953EF866303E8B65",
"children" : [
{
"_id" : ObjectId("58daf84977733645eaa9b450"),
"name" : "Mert",
"age" : 5,
"additionalinformation" : "ilk cocuk",
"creationtime" : ISODate("2017-03-28T23:56:56.952Z"),
"userid" : ObjectId("58daf84877733645eaa9b44f"),
"gender" : null
},
{
"_id" : ObjectId("58daf84977733645eaa9b451"),
"name" : "Sencer",
"age" : 7,
"additionalinformation" : "ikinci cocuk",
"creationtime" : ISODate("2017-03-28T23:56:56.952Z"),
"userid" : ObjectId("58daf84877733645eaa9b44f"),
"gender" : null
}
]
}
Job
{
"_id" : ObjectId("58db0a2d77733645eaa9b453"),
"creationtime" : ISODate("2017-03-29T01:13:17.509Z"),
"startingtime" : ISODate("2017-04-03T13:00:00.000Z"),
"endingtime" : ISODate("2017-04-03T17:00:00.000Z"),
"children" : [
ObjectId("58daf84977733645eaa9b450"),
ObjectId("58daf84977733645eaa9b451")
],
"creatorparent" : ObjectId("58daf84877733645eaa9b44f"),
"applicants" : []
}
If I understood it correctly. A similar solution is achievable using MongoDB 3.4's $addFields and $lookup aggregation steps.
Mongo aggregation:
[
{
$addFields: {
"job":"$$ROOT"
}
},
{
$unwind: {
path : "$children"
}
},
{
$lookup: {
"from" : "users",
"localField" : "creatorParent",
"foreignField" : "_id",
"as" : "creatorParent"
}
},
{
$lookup: {
"from" : "users",
"localField" : "children",
"foreignField" : "_id",
"as" : "children"
}
},
{
$group: {
"_id": "$_id",
"job": { "$first": "$job" },
"creatorParent" : { "$first" : "$creatorParent" },
"children": { "$addToSet": { $arrayElemAt: [ "$children", 0 ] } }
}
}
]
The output will look like the following:
{ "_id" : ObjectId("58da9cb6340c630315348114"),
"job" : {
"_id" : ObjectId("58da9cb6340c630315348114"),
"name" : "Developer",
"creatorParent" : ObjectId("58da9c79340c630315348113"),
"children" : [
ObjectId("58da9c6d340c630315348112"),
ObjectId("58da9c5f340c630315348111")
],
"hourly_rate" : 12.0,
"additional_information" : "other infos"
},
"creatorParent" : [
{
"_id" : ObjectId("58da9c79340c630315348113"),
"name" : "The Boss",
"age" : 40.0
}
],
"children" : [
{
"_id" : ObjectId("58da9c5f340c630315348111"),
"name" : "James",
"age" : 28.0
},
{
"_id" : ObjectId("58da9c6d340c630315348112"),
"name" : "Andrew",
"age" : 26.0
}
]}
UPDATE:
If you substitute the last $group stage with this:
{
"_id": "$_id",
"name": { "$first": "$name" },
"jobstatus": { "$first": "$jobstatus" },
"hourlyrate": { "$first":"$hourlyrate" },
"creatorparent" : { "$first" : "$creatorparent" },
"children": { "$addToSet": { $arrayElemAt: [ "$children", 0 ] } }
}
Then you can achieve what you would like to, but in this $group stage you have to specify every field of job one-by-one with the $first expression.
(Mongo newbie here, sorry) I have a mongodb collection, result of a mapreduce with this schema :
{
"_id" : "John Snow",
"value" : {
"countTot" : 500,
"countCall" : 30,
"comment" : [
{
"text" : "this is a text",
"date" : 2016-11-17 00:00:00.000Z,
"type" : "call"
},
{
"text" : "this is a text",
"date" : 2016-11-12 00:00:00.000Z,
"type" : "visit"
},
...
]
}
}
My goal is to have a document containing all the comments of a certain type. For example, a document John snow with all the calls.
I manage to have all the comments for a certain type using this :
db.general_stats.aggregate(
{ $unwind: '$value.comment' },
{ $match: {
'value.comment.type': 'call'
}}
)
However, I can't find a way to group the data received by the ID (for example john snow) even using the $group property. Any idea ?
Thanks for reading.
Here is the solution for your query.
db.getCollection('calls').aggregate([
{ $unwind: '$value.comment' },
{ $match: {
'value.comment.type': 'call'
}},
{
$group : {
_id : "$_id",
comment : { $push : "$value.comment"},
countTot : {$first : "$value.countTot"},
countCall : {$first : "$value.countCall"},
}
},
{
$project : {
_id : 1,
value : {"countTot":"$countTot","countCall":"$countCall","comment":"$comment"}
}
}
])
or either you can go with $project with $filter option
db.getCollection('calls').aggregate([
{
$project: {
"value.comment": {
$filter: {
input: "$value.comment",
as: "comment",
cond: { $eq: [ "$$comment.type", 'call' ] }
}
},
"value.countTot":"$value.countTot",
"value.countCall":"$value.countCall",
}
}
])
In both case below is my output.
{
"_id" : "John Snow",
"value" : {
"countTot" : 500,
"countCall" : 30,
"comment" : [
{
"text" : "this is a text",
"date" : "2016-11-17 00:00:00.000Z",
"type" : "call"
},
{
"text" : "this is a text 2",
"date" : "2016-11-17 00:00:00.000Z",
"type" : "call"
}
]
}
}
Here is the query which is the extension of the one present in OP.
db.general_stats.aggregate(
{ $unwind: '$value.comment' },
{ $match: {
'value.comment.type': 'call'
}},
{$group : {_id : "$_id", allValues : {"$push" : "$$ROOT"}}},
{$project : {"allValues" : 1, _id : 0} },
{$unwind : "$allValues" }
);
Output:-
{
"allValues" : {
"_id" : "John Snow",
"value" : {
"countTot" : 500,
"countCall" : 30,
"comment" : {
"text" : "this is a text",
"date" : ISODate("2016-11-25T10:46:49.258Z"),
"type" : "call"
}
}
}
}
Got my answer looking at this :
How to retrieve all matching elements present inside array in Mongo DB?
using the $addToSet property in the $group one.
I have a collection that has records looking like this:
"_id" : ObjectId("550424ef2f44472856286d56"), "accountId" : "123",
"contactOperations" :
[
{ "contactId" : "1", "operation" : 1, "date" : 500 },
{ "contactId" : "1", "operation" : 2, "date" : 501 },
{ "contactId" : "2", "operation" : 1, "date" : 502 }
]
}
I want to know the latest operation number that has been applied on a certain contact.
I'm using the aggregation framework to first unwind the contactOperations and then grouping by accountId and contactOperations.contactId and max contactOperations.date.
aggregate([{$unwind : "$contactOperations"}, {$group : {"_id":{"accountId":"$accountId", "contactId":"$contactOperations.contactId"}, "date":{$max:"$contactOperations.date"} }}])
The result I get is:
"_id" : { "accountId" : "123", "contactId" : "2" }, "time" : 502 }
"_id" : { "accountId" : "123", "contactId" : "1" }, "time" : 501 }
Which seems correct so far, but I also need the contactOperations.operation field that was recorded with $max date. How can I select that?
You have to sort the unwind values then apply $last operator to get operation for max date. Hope this query will solve your problem.
aggregate([
{
$unwind: "$contactOperations"
},
{
$sort: {
"date": 1
}
},
{
$group: {
"_id": {
"accountId": "$accountId",
"contactId": "$contactOperations.contactId"
},
"date": {
$max: "$contactOperations.date"
},
"operationId": {
$last: "$contactOperations.operation"
}
}
}
])
Expanded from How to average the summed up values in mongodb?
Using MongoDB 2.4.8,
I have the following records
{
"category" : "TOYS",
"price" : 12,
"status" : "online",
"_id" : "35043"
}
{
"category" : "TOYS",
"price" : 13,
"status" : "offline",
"_id" : "35044"
}
{
"category" : "TOYS",
"price" : 22,
"status" : "online",
"_id" : "35045"
}
{
"category" : "BOOKS",
"price" : 13,
"status" : "offline",
"_id" : "35046"
}
{
"category" : "BOOKS",
"price" : 17,
"status" : "online",
"_id" : "35047"
}
{
"category" : "TOYS",
"price" : 19,
"status" : "unavailable",
"_id" : "35048"
}
{
"category" : "BOOKS",
"price" : 10,
"status" : "unavailable",
"_id" : "35049"
}
{
"category" : "BOOKS",
"price" : 17,
"status" : "unavailable",
"_id" : "35050"
}
I want to find the average price of all categories whose status is online OR offline and total price within a category is more than 50.
Toys offline and Toys online are considered two separate categories.
I adapted the answer given.
db.items.aggregate([
{$match:
{
$or: [
{status:"online"},
{status:"offline"}
]
}
},
{$group :
{
_id: "$category",
total_price: {$sum:"$price"},
}
},
{$match:
{
total_price:{$gt:50}
}
},
{$group :
{
_id: "1",
avg_price: {$avg:"$total_price"},
}
},
]);
But I believe this query I adapted grouped categories of the same name together which is not what I am looking for.
If online and offline are the only values for status, you can remove the initial $match step. If it is needed, it would be more appropriate to use the $in operator as these values could be found in the same index (if one existed).
I think the only step you are missing is that you can $group by multiple fields (i.e. category and status):
db.items.aggregate(
// If 'online' and 'offline' are the only possible status values, this may be unnecessary
{ $match: {
'status' : { $in: [ 'online', 'offline' ] }
}},
// Group by category & status
{ $group: {
_id: { category: "$category", status: "$status" },
total_price: { $sum: "$price" },
}},
// Only find groups where total_price is > 50
{ $match: {
total_price: { $gt:50 }
}},
// Find the average price for the group
{ $group : {
_id: null,
avg_price: {$avg:"$total_price"},
}}
)