What exactly Ciris.ConfigDecoder does in scala - scala

I am new to scala and trying to support an application written in scala using ciris package.
I want to understand the is ciris ConfigDecoder and what the below code is trying to do.
#inline implicit def sourceTopicsConfigDecoder(implicit ev: ConfigDecoder[String, NonEmptyString]): ConfigDecoder[String, SourceTopics] =
ev.map(_.value.split(",").toSet.map(NonEmptyString.unsafeFrom)) map SourceTopics.apply
#inline implicit val sourceTopicsShow: Show[SourceTopics] =
_.unMk.mkString(",")

I've never used (or even heard of) Ciris before, but a quick visit to the documentation informs me that ConfigDecoder is the means by which the received configuration type (usually a String) is cast to a more useful type. Something like: env("SIZE_LIMIT").as[Long]
I also learned that, while many useful ConfigDecoders are supplied, you can also make your own for decoding configuration values into application specific types, and that's what sourceTopicsConfigDecoder appears to be doing. It pulls an existing String-to-NonEmptyString decoder from the implicit scope and uses it to build a String-to-SourceTopics decoder. (SourceTopics must be previously defined.)
The new decoder is made implicit so that elsewhere in the code you can do something like: env("SRC_TOPICS").as[SourceTopics]

Related

Scala type inference not working with play json

I am writing an http client and this is my signature:
def post[Req, Resp](json: Req)(implicit r: Reads[Resp], w: Writes[Req]): Future[Resp]
Using play json behind the scenes.
When I use it like this
def create(req: ClusterCreateRequest): Future[ClusterCreateResponse] = endpoint.post(req)
I get the following error
diverging implicit expansion for type play.api.libs.json.Reads[Resp]
The following works
def create(req: ClusterCreateRequest): Future[ClusterCreateResponse] = endpoint.post[ClusterCreateRequest, ClusterCreateResponse](req)
Why is type inference not working as expected? What can I do for this?
diverging implicit expansion for type play.api.libs.json.Reads[Resp]
means that Resp has few JSON serializers that are not shadowed one by another.
It's not possible to pinpoint root cause the issue and say fix X and everything will work from the infrmation given in post.
But you can try to "debug" implicit search. Consider checking the implicit search order:
Where does Scala look for implicits? Enabling implicit parameter expansion in idea might help to check which implicits(Ctrl+Shift+=) cause a clash.
General advice for type class instances - hold them organized and declared, put them to companion object or to specially dedicated object.

can`t bind[SttpBackend[Try, Nothing]]

I want to use sttp library with guice(with scalaguice wrapper) in my app. But seems it is not so easy to correctly bind things like SttpBackend[Try, Nothing]
SttpBackend.scala
Try[_] and Try[AnyRef] show some other errors, but still have no idea how it should be done correctly
the error I got:
kinds of the type arguments (scala.util.Try) do not conform to the expected kinds of the type parameters (type T).
[error] scala.util.Try's type parameters do not match type T's expected parameters:
[error] class Try has one type parameter, but type T has none
[error] bind[SttpBackend[Try, Nothing]].toProvider[SttpBackendProvider]
[error] ` ^
SttpBackendProvider looks like:
def get: SttpBackend[Try, Nothing] = TryHttpURLConnectionBackend(opts)
complete example in scastie
interesting that version scalaguice 4.1.0 show this error, but latest 4.2.2 shows error inside it with converting Nothing to JavaType
I believe you hit two different bugs in the Scala-Guice one of which is not fixed yet (and probably even not submitted yet).
To describe those issues I need a fast intro into how Guice and Scala-Guice work. Essentially what Guice do is have a mapping from type onto the factory method for an object of that type. To support some advanced features types are mapped onto some internal "keys" representation and then for each "key" Guice builds a way to construct a corresponding object. Also it is important that generics in Java are implemented using type erasure. That's why when you write something like:
bind(classOf[SttpBackend[Try, Nothing]]).toProvider(classOf[SttpBackendProvider])
in raw-Guice, the "key" actually becomes something like "com.softwaremill.sttp.SttpBackend". Luckily Guice developers have thought about this issue with generics and introduced TypeLiteral[T] so you can convey the information about generics.
Scala type system is more reach than in Java and it has some better reflection support from the compiler. Scala-Guice exploits it to map Scala-types on those more detailed keys automatically. Unfortunately it doesn't always work perfectly.
The first issue is the result of the facts that the type SttpBackend is defined as
trait SttpBackend[R[_], -S]
so it uses it expects its first parameter to be a type constructor; and that originally Scala-Guice used the scala.reflect.Manifest infrastructure. AFAIU such higher-kind types are not representable as Manifest and this is what the error in your question really says.
Luckily Scala has added a new scala.reflect.runtime.universe.TypeTag infrastructure to tackle this issue in a better and more consistent way and the Scala-Guice migrated to its usage. That's why with the newer version of Scala-Guice the compiler error goes away. Unfortunately there is another bug in the Scala-Guice that makes the code fail in runtime and it is a lack of handling of the Nothing Scala type. You see, the Nothing type is a kind of fake one on the JVM. It is one of the things where the Scala type system is more reach than the Java one. There is no direct mapping for Nothing in the JVM world. Luckily there is no way to create any value of the type Nothing. Unfortunately you still can create a classOf[Nothing]. The Scala-to-JVM compiler handles it by using an artificial scala.runtime.Nothing$. It is not a part of the public API, it is implementation details of specifically Scala over JVM. Anyway this means that the Nothing type needs additional handling when converting into the Guice TypeLiteral and there is none. There is for Any the cousin of Nothing but not for Nothing (see the usage of the anyType in TypeConversions.scala).
So there are really two workarounds:
Use raw Java-based syntax for Guice instead of the nice Scala-Guice one:
bind(new TypeLiteral[SttpBackend[Try, Nothing]]() {})
.toInstance(sttpBackend) // or to whatever
See online demo based on your example.
Patch the TypeConversions.scala in the Scala-Guice as in:
private[scalaguice] object TypeConversions {
private val mirror = runtimeMirror(getClass.getClassLoader)
private val anyType = typeOf[Any]
private val nothingType = typeOf[Nothing] // added
...
def scalaTypeToJavaType(scalaType: ScalaType): JavaType = {
scalaType.dealias match {
case `anyType` => classOf[java.lang.Object]
case `nothingType` => classOf[scala.runtime.Nothing$] //added
...
I tried it locally and it seems to fix your example. I didn't do any extensive tests so it might have broken something else.

Elastic4s, mockito and verify with type erasure and implicits

In previous versions of Elastic4s you could do something like
val argument1: ArgumentCapture[DeleteIndexDefinition] = ???
verify(client).execute(argument1.capture())
assert(argument1 == ???)
val argument2: ArgumentCapture[IndexDefinition] = ???
verify(client, times(2)).execute(argument2.capture())
assert(argument2 == ???)
after several executions in your test (i.e. one DeleteIndexDefinition, followed of two IndexDefinition). And each verify would be matched against its type.
However, Elastic4s now takes an implicit parameter in its client.execute method. The parameter is of type Executable[T,R], which means you now need something like
val argument1: ArgumentCapture[DeleteIndexDefinition] = ???
verify(client).execute(argument1.capture())(any[Executable[DeleteIndexDefinition,R]])
assert(argument1 == ???)
val argument2: ArgumentCapture[IndexDefinition] = ???
verify(client, times(2)).execute(argument2.capture())(any[Executable[IndexDefinition,R]])
assert(argument2 == ???)
After doing that, I was getting an error. Mockito is considering both three client.execute in the first verify. Yes, even if the first parameter is of a different type.
That's because the implicit(the second parameter) has, after type erasure, the same type Executable.
So the asertions were failing. How to test in this setup?
The approach now taken in elastic4s to encapsulate the logic for executing each request type is one using typeclasses. This is why the implicit now exists. It help modularize each request type, and avoids the God class anti-pattern that was starting to creep into the ElasticClient class.
Two things I can think of that might help you:
What you already posted up, using Mockito and passing in the implicit as another matcher. This is how you can mock a method using implicits in general.
Not use mockito, but spool up a local embedded node, and try it against real data. This is my preferred approach when I write elasticsearch code. The advantages are that you're testing real queries against the real server, so not only checking that they are invoked, but that they actually work. (Some people might consider this an integration test, but whatever I don't agree, it all runs inside a single self contained test with no outside deps).
The latest release of elastic4s even include a testkit that makes it really easy to get the embedded node. You can look at almost any of the unit tests to give you an idea how to use it.
My solution was to create one verify with a generic type. It took me a while to realise that even if there is no common type, you always have AnyRef.
So, something like this works
val objs: ArgumentCaptor[AnyRef] = ArgumentCaptor.forClass(classOf[AnyRef])
verify(client, times(3)).execute(objs.capture())(any())
val values = objs.getAllValues
assert(values.get(0).isInstanceOf[DeleteIndexDefinition])
assert(values.get(1).isInstanceOf[IndexDefinition])
assert(values.get(2).isInstanceOf[IndexDefinition])
I've created both the question and the answer. But I'll consider other answers.

Collision of implicits in Scala

The following Scala code works correctly:
val str1 = "hallo"
val str2 = "huhu"
val zipped: IndexedSeq[(Char, Char)] = str1.zip(str2)
However if I import the implicit method
implicit def stringToNode(str: String): xml.Node = new xml.Text(str)
then the Scala (2.10) compiler shows an error: value zip is not a member of String
It seems that the presence of stringToNode somehow blocks the implicit conversion of str1 and str2 to WrappedString. Why? And is there a way to modify stringToNode such that zip works but stringToNode is still used when I call a function that requires a Node argument with a String?
You have ambiguous implicits here. Both StringOps and xml.Node have the zip-method, therefore the implicit conversion is ambiguous and cannot be resolved. I don't know why it doesn't give a better error message.
Here are some links to back it up:
http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.StringOps
and
http://www.scala-lang.org/api/current/index.html#scala.xml.Node
edit: it was StringOps, not WrappedString, changed the links :) Have a look at Predef: http://www.scala-lang.org/api/current/index.html#scala.Predef$
to see predefined implicits in Scala.
I would avoid using implicits in this case. You want 2 different implicit conversions which both provide a method of the same name (zip). I don't think this is possible. Also, if you import xml.Text, you can convert with just Text(str) which should be concise enough for anyone. If you must have this implicit conversion to xml.Node, I would pack the implicit def into an object and then import it only in the places where you need it to make your code readable and to, possibly, avoid conflicts where you also need to zip strings. But basically, I would very much avoid using implicits just to make convenient conversions.
Like #Felix wrote, it is generally a bad idea to define implicit conversions between similar data types, like the one you used. Doing that weakens type system, leads to ambiguities like you encountered and may produce extremely unclear ("magic") code which is very hard to analyze and debug.
Implicit conversions in Scala are mostly used to define lightweight, short-lived wrappers in order to enrich API of wrapped type. Implicit conversion that converts String into WrappedString falls into that category.
Twitter's Effective Scala has a section about this issue.

Good example of implicit parameter in Scala? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
So far implicit parameters in Scala do not look good for me -- it is too close to global variables, however since Scala seems like rather strict language I start doubting in my own opinion :-).
Question: could you show a real-life (or close) good example when implicit parameters really work. IOW: something more serious than showPrompt, that would justify such language design.
Or contrary -- could you show reliable language design (can be imaginary) that would make implicit not neccessary. I think that even no mechanism is better than implicits because code is clearer and there is no guessing.
Please note, I am asking about parameters, not implicit functions (conversions)!
Updates
Global variables
Thank you for all great answers. Maybe I clarify my "global variables" objection. Consider such function:
max(x : Int,y : Int) : Int
you call it
max(5,6);
you could (!) do it like this:
max(x:5,y:6);
but in my eyes implicits works like this:
x = 5;
y = 6;
max()
it is not very different from such construct (PHP-like)
max() : Int
{
global x : Int;
global y : Int;
...
}
Derek's answer
This is great example, however if you can think of as flexible usage of sending message not using implicit please post an counter-example. I am really curious about purity in language design ;-).
In a sense, yes, implicits represent global state. However, they are not mutable, which is the true problem with global variables -- you don't see people complaining about global constants, do you? In fact, coding standards usually dictate that you transform any constants in your code into constants or enums, which are usually global.
Note also that implicits are not in a flat namespace, which is also a common problem with globals. They are explicitly tied to types and, therefore, to the package hierarchy of those types.
So, take your globals, make them immutable and initialized at the declaration site, and put them on namespaces. Do they still look like globals? Do they still look problematic?
But let's not stop there. Implicits are tied to types, and they are just as much "global" as types are. Does the fact that types are global bother you?
As for use cases, they are many, but we can do a brief review based on their history. Originally, afaik, Scala did not have implicits. What Scala had were view types, a feature many other languages had. We can still see that today whenever you write something like T <% Ordered[T], which means the type T can be viewed as a type Ordered[T]. View types are a way of making automatic casts available on type parameters (generics).
Scala then generalized that feature with implicits. Automatic casts no longer exist, and, instead, you have implicit conversions -- which are just Function1 values and, therefore, can be passed as parameters. From then on, T <% Ordered[T] meant a value for an implicit conversion would be passed as parameter. Since the cast is automatic, the caller of the function is not required to explicitly pass the parameter -- so those parameters became implicit parameters.
Note that there are two concepts -- implicit conversions and implicit parameters -- that are very close, but do not completely overlap.
Anyway, view types became syntactic sugar for implicit conversions being passed implicitly. They would be rewritten like this:
def max[T <% Ordered[T]](a: T, b: T): T = if (a < b) b else a
def max[T](a: T, b: T)(implicit $ev1: Function1[T, Ordered[T]]): T = if ($ev1(a) < b) b else a
The implicit parameters are simply a generalization of that pattern, making it possible to pass any kind of implicit parameters, instead of just Function1. Actual use for them then followed, and syntactic sugar for those uses came latter.
One of them is Context Bounds, used to implement the type class pattern (pattern because it is not a built-in feature, just a way of using the language that provides similar functionality to Haskell's type class). A context bound is used to provide an adapter that implements functionality that is inherent in a class, but not declared by it. It offers the benefits of inheritance and interfaces without their drawbacks. For example:
def max[T](a: T, b: T)(implicit $ev1: Ordering[T]): T = if ($ev1.lt(a, b)) b else a
// latter followed by the syntactic sugar
def max[T: Ordering](a: T, b: T): T = if (implicitly[Ordering[T]].lt(a, b)) b else a
You have probably used that already -- there's one common use case that people usually don't notice. It is this:
new Array[Int](size)
That uses a context bound of a class manifests, to enable such array initialization. We can see that with this example:
def f[T](size: Int) = new Array[T](size) // won't compile!
You can write it like this:
def f[T: ClassManifest](size: Int) = new Array[T](size)
On the standard library, the context bounds most used are:
Manifest // Provides reflection on a type
ClassManifest // Provides reflection on a type after erasure
Ordering // Total ordering of elements
Numeric // Basic arithmetic of elements
CanBuildFrom // Collection creation
The latter three are mostly used with collections, with methods such as max, sum and map. One library that makes extensive use of context bounds is Scalaz.
Another common usage is to decrease boiler-plate on operations that must share a common parameter. For example, transactions:
def withTransaction(f: Transaction => Unit) = {
val txn = new Transaction
try { f(txn); txn.commit() }
catch { case ex => txn.rollback(); throw ex }
}
withTransaction { txn =>
op1(data)(txn)
op2(data)(txn)
op3(data)(txn)
}
Which is then simplified like this:
withTransaction { implicit txn =>
op1(data)
op2(data)
op3(data)
}
This pattern is used with transactional memory, and I think (but I'm not sure) that the Scala I/O library uses it as well.
The third common usage I can think of is making proofs about the types that are being passed, which makes it possible to detect at compile time things that would, otherwise, result in run time exceptions. For example, see this definition on Option:
def flatten[B](implicit ev: A <:< Option[B]): Option[B]
That makes this possible:
scala> Option(Option(2)).flatten // compiles
res0: Option[Int] = Some(2)
scala> Option(2).flatten // does not compile!
<console>:8: error: Cannot prove that Int <:< Option[B].
Option(2).flatten // does not compile!
^
One library that makes extensive use of that feature is Shapeless.
I don't think the example of the Akka library fits in any of these four categories, but that's the whole point of generic features: people can use it in all sorts of way, instead of ways prescribed by the language designer.
If you like being prescribed to (like, say, Python does), then Scala is just not for you.
Sure. Akka's got a great example of it with respect to its Actors. When you're inside an Actor's receive method, you might want to send a message to another Actor. When you do this, Akka will bundle (by default) the current Actor as the sender of the message, like this:
trait ScalaActorRef { this: ActorRef =>
...
def !(message: Any)(implicit sender: ActorRef = null): Unit
...
}
The sender is implicit. In the Actor there is a definition that looks like:
trait Actor {
...
implicit val self = context.self
...
}
This creates the implicit value within the scope of your own code, and it allows you to do easy things like this:
someOtherActor ! SomeMessage
Now, you can do this as well, if you like:
someOtherActor.!(SomeMessage)(self)
or
someOtherActor.!(SomeMessage)(null)
or
someOtherActor.!(SomeMessage)(anotherActorAltogether)
But normally you don't. You just keep the natural usage that's made possible by the implicit value definition in the Actor trait. There are about a million other examples. The collection classes are a huge one. Try wandering around any non-trivial Scala library and you'll find a truckload.
One example would be the comparison operations on Traversable[A]. E.g. max or sort:
def max[B >: A](implicit cmp: Ordering[B]) : A
These can only be sensibly defined when there is an operation < on A. So, without implicits we’d have to supply the context Ordering[B] every time we’d like to use this function. (Or give up type static checking inside max and risk a runtime cast error.)
If however, an implicit comparison type class is in scope, e.g. some Ordering[Int], we can just use it right away or simply change the comparison method by supplying some other value for the implicit parameter.
Of course, implicits may be shadowed and thus there may be situations in which the actual implicit which is in scope is not clear enough. For simple uses of max or sort it might indeed be sufficient to have a fixed ordering trait on Int and use some syntax to check whether this trait is available. But this would mean that there could be no add-on traits and every piece of code would have to use the traits which were originally defined.
Addition:
Response to the global variable comparison.
I think you’re correct that in a code snipped like
implicit val num = 2
implicit val item = "Orange"
def shopping(implicit num: Int, item: String) = {
"I’m buying "+num+" "+item+(if(num==1) "." else "s.")
}
scala> shopping
res: java.lang.String = I’m buying 2 Oranges.
it may smell of rotten and evil global variables. The crucial point, however, is that there may be only one implicit variable per type in scope. Your example with two Ints is not going to work.
Also, this means that practically, implicit variables are employed only when there is a not necessarily unique yet distinct primary instance for a type. The self reference of an actor is a good example for such a thing. The type class example is another example. There may be dozens of algebraic comparisons for any type but there is one which is special.
(On another level, the actual line number in the code itself might also make for a good implicit variable as long as it uses a very distinctive type.)
You normally don’t use implicits for everyday types. And with specialised types (like Ordering[Int]) there is not too much risk in shadowing them.
Based on my experience there is no real good example for use of implicits parameters or implicits conversion.
The small benefit of using implicits (not needing to explicitly write a parameter or a type) is redundant in compare to the problems they create.
I am a developer for 15 years, and have been working with scala for the last 1.5 years.
I have seen many times bugs that were caused by the developer not aware of the fact that implicits are used, and that a specific function actually return a different type that the one specified. Due to implicit conversion.
I also heard statements saying that if you don't like implicits, don't use them.
This is not practical in the real world since many times external libraries are used, and a lot of them are using implicits, so your code using implicits, and you might not be aware of that.
You can write a code that has either:
import org.some.common.library.{TypeA, TypeB}
or:
import org.some.common.library._
Both codes will compile and run.
But they will not always produce the same results since the second version imports implicits conversion that will make the code behave differently.
The 'bug' that is caused by this can occur a very long time after the code was written, in case some values that are affected by this conversion were not used originally.
Once you encounter the bug, its not an easy task finding the cause.
You have to do some deep investigation.
Even though you feel like an expert in scala once you have found the bug, and fixed it by changing an import statement, you actually wasted a lot of precious time.
Additional reasons why I generally against implicits are:
They make the code hard to understand (there is less code, but you don't know what he is doing)
Compilation time. scala code compiles much slower when implicits are used.
In practice, it changes the language from statically typed, to dynamically typed. Its true that once following very strict coding guidelines you can avoid such situations, but in real world, its not always the case. Even using the IDE 'remove unused imports', can cause your code to still compile and run, but not the same as before you removed 'unused' imports.
There is no option to compile scala without implicits (if there is please correct me), and if there was an option, none of the common community scala libraries would have compile.
For all the above reasons, I think that implicits are one of the worst practices that scala language is using.
Scala has many great features, and many not so great.
When choosing a language for a new project, implicits are one of the reasons against scala, not in favour of it. In my opinion.
Another good general usage of implicit parameters is to make the return type of a method depend on the type of some of the parameters passed to it. A good example, mentioned by Jens, is the collections framework, and methods like map, whose full signature usually is:
def map[B, That](f: (A) ⇒ B)(implicit bf: CanBuildFrom[GenSeq[A], B, That]): That
Note that the return type That is determined by the best fitting CanBuildFrom that the compiler can find.
For another example of this, see that answer. There, the return type of the method Arithmetic.apply is determined according to a certain implicit parameter type (BiConverter).
It's easy, just remember:
to declare the variable to be passed in as implicit too
to declare all the implicit params after the non-implicit params in a separate ()
e.g.
def myFunction(): Int = {
implicit val y: Int = 33
implicit val z: Double = 3.3
functionWithImplicit("foo") // calls functionWithImplicit("foo")(y, z)
}
def functionWithImplicit(foo: String)(implicit x: Int, d: Double) = // blar blar
Implicit parameters are heavily used in the collection API. Many functions get an implicit CanBuildFrom, which ensures that you get the 'best' result collection implementation.
Without implicits you would either pass such a thing all the time, which would make normal usage cumbersome. Or use less specialized collections which would be annoying because it would mean you loose performance/power.
I am commenting on this post a bit late, but I have started learning scala lately.
Daniel and others have given nice background about implicit keyword.
I would provide me two cents on implicit variable from practical usage perspective.
Scala is best suited if used for writing Apache Spark codes. In Spark, we do have spark context and most likely the configuration class that may fetch the configuration keys/values from a configuration file.
Now, If I have an abstract class and if I declare an object of configuration and spark context as follows :-
abstract class myImplicitClass {
implicit val config = new myConfigClass()
val conf = new SparkConf().setMaster().setAppName()
implicit val sc = new SparkContext(conf)
def overrideThisMethod(implicit sc: SparkContext, config: Config) : Unit
}
class MyClass extends myImplicitClass {
override def overrideThisMethod(implicit sc: SparkContext, config: Config){
/*I can provide here n number of methods where I can pass the sc and config
objects, what are implicit*/
def firstFn(firstParam: Int) (implicit sc: SparkContext, config: Config){
/*I can use "sc" and "config" as I wish: making rdd or getting data from cassandra, for e.g.*/
val myRdd = sc.parallelize(List("abc","123"))
}
def secondFn(firstParam: Int) (implicit sc: SparkContext, config: Config){
/*following are the ways we can use "sc" and "config" */
val keyspace = config.getString("keyspace")
val tableName = config.getString("table")
val hostName = config.getString("host")
val userName = config.getString("username")
val pswd = config.getString("password")
implicit val cassandraConnectorObj = CassandraConnector(....)
val cassandraRdd = sc.cassandraTable(keyspace, tableName)
}
}
}
As we can see the code above, I have two implicit objects in my abstract class, and I have passed those two implicit variables as function/method/definition implicit parameters.
I think this is the best use case that we can depict in terms of usage of implicit variables.