Drawing logical circuit for a simplified boolean expression - boolean-expression

I need to draw a logical circuit from a simplified boolean expression.
Here's the expression:
x = PQ'R' + PQ'R + PQR' + PQR
I got the simplified expression as x = P.
I need to draw the circuit from this simplified expression.
Now, my question is, how to draw the logical circuit when the simplified expression has only one variable?
Any help is appreciated. Thanks.
EDIT: I used AND gate and gave both input as P, so it will give the output P itself. Is it right?

this is circuit of 'x' that include 4 And gate with three input and 1 Or gate with four input

Related

Effective ways to represent logical expression

I am writing a console program to represent logical expressions( something likes AB'C + A'C) so that I can be simplify( optimize) the expressions and evaluate their values. I tried to use string to represent an expression, but in this way, I can only evaluate its value base on input values, but optimize an expression that represented as string is very difficult( with me), Example, ABC + AB can be AB because ABC+AB = AB(C+1) = AB. I have also think another way it is using vector of vector of literal. Example, AB'C + AB + BC will be represent as below figure:
Explaining: Each column is represent for each term, in above example. The first column represents for AB'C, the second one represents for AB and the third one represents for BC'.
I think it is a good way to present logical expression but I still can not find a way to optimize an expression that repression by this way. I also googled but I did not find sample project for the problem.
In short, I hope someone suggest to me a way to represent, evaluate and optimize an logical expression easier. Thank in advance!
How to represent, evaluate and optimize a logical expression?
To represent this you need to use an expression tree and since you are using only logic operators that are binary operators you want to use a binary expression tree or more specifically this.
To simplify the tree you use the laws of Boolean algebra.
If all of the values are bound, then through the process of simplification the tree will simplify to a root node with either true or false.
For some example code I checked Rosetta Code but they had no task for evaluating Boolean expressions. The closest task is arithmetic evaluation.

Ti Basic (Ti-82 Plus) - Replace variable by numbers and X's

I whant to replace a variable by some numbers and X's or even a direct equation like 3X+2 = 5
Yeah I'm codding a resolution of equations :D (i'm borred)
This is what i've written right now
Prompt E
Prompt F
while T [not equal to] 1
X+0.01 -> X
If E=F
1 -> T
If E=F
Disp X
End
So what i'm trying to do is say E is 3X+2 and F is 5
I test all the possible solutions by replacing X by every number and when it equals to F (so 5) i stop and print X
It works when I replace directly in the code the E and F but it's long and useless if I whant to use it.
If 3X+2=5
1 -> T
If 3X+2=5
Disp X
End
This works !!
So is it possible for the calculator to interpret that i'm saying that E is a long sentence ?
Thanks so much !
Ps : Don't worry if i make mistakes in my orthograph, (i'm french)
Ps 2 : Don't just tell me how to do a resolution of equation (Don't tell me what I can't do !! (lost (4 8 15 16 23 42)))
Are you asking how to input "3X+2" into the variable E?
In this case, you wouldn't want to use a variable, because variables in TI-84 can only be numbers. You would use strings, which store text instead of numbers. Go to VARS > String... to see the list of strings available.
Now, to find the numerical value of strings, you would use the expr( command. For example, expr("3X+2") where X=1 would return 5. You can find the expr( command in the catalog (2ND + 0).
You're looking for equation variables.
An expression can be stored into an equation variable such as Y₁; it will be evaluated every time it is encountered.
"3X+2→Y₁
5→X
Disp Y₁
-2→X
Disp Y₁
The above will print
17
-4
Equation variables are easier to use than strings, because they are automatically evaluated. There's no need to use expr(. To find the equation variables, press VARS > ENTER.

Boolean Expression Evaluation For ExNor Gate

I know that an xnor expression can be broken up as follows:
X xnor Y = X'Y' + XY
But but I know that sume of the complement of the same combination (x+x') is 1 always therefore shouldn't xnor be always equal to 1?
I got confused in this question when I was trying to solve the following problem:
Z=X*Y where * denotes xnor. Evaluate Z*X.
My answer was 1, which according to the provided solution is incorrect the correct solution was given Y.
How? Thanks for the help.

Simplifying a 9 variable boolean expression

I am trying to create a tic-tac-toe program as a mental exercise and I have the board states stored as booleans like so:
http://i.imgur.com/xBiuoAO.png
I would like to simplify this boolean expression...
(a&b&c) | (d&e&f) | (g&h&i) | (a&d&g) | (b&e&h) | (c&f&i) | (a&e&i) | (g&e&c)
My first thoughts were to use a Karnaugh Map but there were no solvers online that supported 9 variables.
and heres the question:
First of all, how would I know if a boolean condition is already as simple as possible?
and second: What is the above boolean condition simplified?
2. Simplified condition:
The original expression
a&b&c|d&e&f|g&h&i|a&d&g|b&e&h|c&f&i|a&e&i|g&e&c
can be simplified to the following, knowing that & is more prioritary than |
e&(d&f|b&h|a&i|g&c)|a&(b&c|d&g)|i&(g&h|c&f)
which is 4 chars shorter, performs in the worst case 18 & and | evaluations (the original one counted 23)
There is no shorter boolean formula (see point below). If you switch to matrices, maybe you can find another solution.
1. Making sure we got the smallest formula
Normally, it is very hard to find the smallest formula. See this recent paper if you are more interested. But in our case, there is a simple proof.
We will reason about a formula being the smallest with respect to the formula size, where for a variable a, size(a)=1, for a boolean operation size(A&B) = size(A|B) = size(A) + 1 + size(B), and for negation size(!A) = size(A) (thus we can suppose that we have Negation Normal Form at no cost).
With respect to that size, our formula has size 37.
The proof that you cannot do better consists in first remarking that there are 8 rows to check, and that there is always a pair of letter distinguishing 2 different rows. Since we can regroup these 8 checks in no less than 3 conjuncts with the remaining variable, the number of variables in the final formula should be at least 8*2+3 = 19, from which we can deduce the minimal tree size.
Detailed proof
Let us suppose that a given formula F is the smallest and in NNF format.
F cannot contain negated variables like !a. For that, remark that F should be monotonic, that is, if it returns "true" (there is a winning row), then changing one of the variables from false to true should not change that result. According to Wikipedia, F can be written without negation. Even better, we can prove that we can remove the negation. Following this answer, we could convert back and from DNF format, removing negated variables in the middle or replacing them by true.
F cannot contain a sub-tree like a disjunction of two variables a|b.
For this formula to be useful and not exchangeable with either a or b, it would mean that there are contradicting assignments such that for example
F[a|b] = true and F[a] = false, therefore that a = false and b = true because of monotonicity. Also, in this case, turning b to false makes the whole formula false because false = F[a] = F[a|false] >= F[a|b](b = false).
Therefore there is a row passing by b which is the cause of the truth, and it cannot go through a, hence for example e = true and h = true.
And the checking of this row passes by the expression a|b for testing b. However, it means that with a,e,h being true and all other set to false, F is still true, which contradicts the purpose of the formula.
Every subtree looking like a&b checks a unique row. So the last letter should appear just above the corresponding disjunction (a&b|...)&{c somewhere for sure here}, or this leaf is useless and either a or b can be removed safely. Indeed, suppose that c does not appear above, and the game is where a&b&c is true and all other variables are false. Then the expression where c is supposed to be above returns false, so a&b will be always useless. So there is a shorter expression by removing a&b.
There are 8 independent branches, so there is at least 8 subtrees of type a&b. We cannot regroup them using a disjunction of 2 conjunctions since a, f and h never share the same rows, so there must be 3 outer variables. 8*2+3 makes 19 variables appear in the final formula.
A tree with 19 variables cannot have less than 18 operators, so in total the size have to be at least 19+18 = 37.
You can have variants of the above formula.
QED.
One option is doing the Karnaugh map manually. Since you have 9 variables, that makes for a 2^4 by 2^5 grid, which is rather large, and by the looks of the equation, probably not very interesting either.
By inspection, it doesn't look like a Karnaugh map will give you any useful information (Karnaugh maps basically reduce expressions such as ((!a)&b) | (a&b) into b), so in that sense of simplification, your expression is already as simple as it can get. But if you want to reduce the number of computations, you can factor out a few variables using the distributivity of the AND operators over ORs.
The best way to think of this is how a person would think of it. No person would say to themselves, "a and b and c, or if d and e and f," etc. They would say "Any three in a row, horizontally, vertically, or diagonally."
Also, instead of doing eight checks (3 rows, 3 columns, and 2 diagonals), you can do just four checks (three rows and one diagonal), then rotate the board 90 degrees, then do the same checks again.
Here's what you end up with. These functions all assume that the board is a three-by-three matrix of booleans, where true represents a winning symbol, and false represents a not-winning symbol.
def win?(board)
winning_row_or_diagonal?(board) ||
winning_row_or_diagonal?(rotate_90(board))
end
def winning_row_or_diagonal?(board)
winning_row?(board) || winning_diagonal?(board)
end
def winning_row?(board)
3.times.any? do |row_number|
three_in_a_row?(board, row_number, 0, 1, 0)
end
end
def winning_diagonal?(board)
three_in_a_row?(board, 0, 0, 1, 1)
end
def three_in_a_row?(board, x, y, delta_x, delta_y)
3.times.all? do |i|
board[x + i * delta_x][y + i * deltay]
end
end
def rotate_90(board)
board.transpose.map(&:reverse)
end
The matrix rotate is from here: https://stackoverflow.com/a/3571501/238886
Although this code is quite a bit more verbose, each function is clear in its intent. Rather than a long boolean expresion, the code now expresses the rules of tic-tac-toe.
You know it's a simple as possible when there are no common sub-terms to extract (e.g. if you had "a&b" in two different trios).
You know your tic tac toe solution must already be as simple as possible because any pair of boxes can belong to at most only one winning line (only one straight line can pass through two given points), so (a & b) can't be reused in any other win you're checking for.
(Also, "simple" can mean a lot of things; specifying what you mean may help you answer your own question. )

Understanding colon notation in MATLAB

So I'm completely new to MATLAB and I'm trying to understand colon notation within mathematical operations. So, in this book I found this statement:
w(1:5)=j(1:5) + k(1:5);
I do not understand what it really does. I know that w(1:5) is pretty much iterating through the w array from index 1 through 5, but in the statement above, shouldn't all indexes of w be equal to j(5) + k(5) in the end? Or am I completely wrong on how this works? It'd be awesome if someone posted the equivalent in Java to that up there. Thanks in advance :-)
I am pretty sure this means
"The first 5 elements of w shall be the first 5 elements of j + the first 5 elements of k" (I am not sure if matlab arrays start with 0 or 1 though)
So:
w1 = j1+k1
w2 = j2+k2
w3 = j3+k3
w4 = j4+k4
w5 = j5+k5
Think "Vector addition" here.
w(1:5)=j(1:5) + k(1:5);
is the same that:
for i=1:5
w(i)=j(i)+k(i);
end
MATLAB uses vectors and matrices, and is heavily optimized to handle operations on them efficiently.
The expression w(1:5) means a vector consisting of the first 5 elements of w; the expression you posted adds two 5 element vectors (the first 5 elements of j and k) and assigns the result to the first five elements of w.
I think your problem comes from the way how do you call this statement. It is not an iteration, but rather simple assignment. Now we only need to understand what was assigned to what.
I will assume j,k, w are all vectors 1 by N.
j(1:5) - means elements from 1 to 5 of the vector j
j(1:5) + k(1:5) - will result in elementwise sum of both operands
w(1:5) = ... - will assign the result again elementwise to w
Writing your code using colon notation makes it less verbose and more efficient. So it is highly recommended to do so. Also, colon notation is the basic and very powerful feature of MATLAB. Make sure you understand it well, before you move on. MATLAB is very well documented so you can read on this topic here.