Julia Flux double inference issue - neural-network

Recently I found that Julia lang become more powerful and it's time to revisit it again. But in every tutorial, I found the same problem with double inference - for each batch you have to calculate the model to get gradients and then recalculate it to get the loss and other metrics. This seems ridiculous and it must be a way out. Can I get model prediction and its loss before gradients update step without recalculation? Here I made an example for MLP and MNIST
using Flux, Flux.Data.MNIST, Statistics
using Flux: onehotbatch, onecold, crossentropy
using Flux.Optimise: update!
using Flux.Data: DataLoader
using Printf
X = hcat(float.(reshape.(MNIST.images(), :))...) |> gpu
Y = onehotbatch(MNIST.labels(), 0:9) |> gpu
m = Chain(
Dense(784, 32, relu),
Dense(32, 32, relu),
Dense(32, 10),
softmax
) |> gpu
loss(ŷ, y) = Flux.crossentropy(ŷ, y)
accuracy(x, y) = mean(onecold(cpu(x)) .== onecold(cpu(y)))
dl = DataLoader(X, Y, batchsize=128)
ps = params(m)
opt = Descent(0.1)
#progress for i = 1:10
#info "Epoch $i"
for (x, y) in dl
gs = gradient(ps) do
loss(m(x), y)
end
update!(opt, ps, gs)
end
vloss, vacc = [], []
for (x,y) in dl
ŷ = m(x)
l = loss(ŷ, y)
push!(vloss, l)
push!(vacc, accuracy(ŷ, y))
end
#printf "Train :: loss: %-5f acc: %-5f\n" mean(vloss) mean(vacc)
end

By the way backward-mode AD works, you get the so called "forward value" back anyway every time you calculate a gradient. If you look at how gradient is defined in Zygote, you see that you can use pullback to get both at the same time:
function value_and_gradient(f, args...)
y, back = pullback(f, args...)
return y, back(sensitivity(y))
end
sensitivity is just one, or an error for non-differentiable output types.

Related

How to run an exponential decay mixed model?

I am not familiar with nonlinear regression and would appreciate some help with running an exponential decay model in R. Please see the graph for how the data looks like. My hunch is that an exponential model might be a good choice. I have one fixed effect and one random effect. y ~ x + (1|random factor). How to get the starting values for the exponential model (please assume that I know nothing about nonlinear regression) in R? How do I subsequently run a nonlinear model with these starting values? Could anyone please help me with the logic as well as the R code?
As I am not familiar with nonlinear regression, I haven't been able to attempt it in R.
raw plot
The correct syntax will depend on your experimental design and model but I hope to give you a general idea on how to get started.
We begin by generating some data that should match the type of data you are working with. You had mentioned a fixed factor and a random one. Here, the fixed factor is represented by the variable treatment and the random factor is represented by the variable grouping_factor.
library(nlraa)
library(nlme)
library(ggplot2)
## Setting this seed should allow you to reach the same result as me
set.seed(3232333)
example_data <- expand.grid(treatment = c("A", "B"),
grouping_factor = c('1', '2', '3'),
replication = c(1, 2, 3),
xvar = 1:15)
The next step is to create some "observations". Here, we use an exponential function y=a∗exp(c∗x) and some random noise to create some data. Also, we add a constant to treatment A just to create some treatment differences.
example_data$y <- ave(example_data$xvar, example_data[, c('treatment', 'replication', 'grouping_factor')],
FUN = function(x) {expf(x = x,
a = 10,
c = -0.3) + rnorm(1, 0, 0.6)})
example_data$y[example_data$treatment == 'A'] <- example_data$y[example_data$treatment == 'A'] + 0.8
All right, now we start fitting the model.
## Create a grouped data frame
exampleG <- groupedData(y ~ xvar|grouping_factor, data = example_data)
## Fit a separate model to each groupped level
fitL <- nlsList(y ~ SSexpf(xvar, a, c), data = exampleG)
## Grab the coefficients of the general model
fxf <- fixed.effects(fit1)
## Add treatment as a fixed effect. Also, use the coeffients from the previous
## regression model as starting values.
fit2 <- update(fit1, fixed = a + c ~ treatment,
start = c(fxf[1], 0,
fxf[2], 0))
Looking at the model output, it will give you information like the following:
Nonlinear mixed-effects model fit by maximum likelihood
Model: y ~ SSexpf(xvar, a, c)
Data: exampleG
AIC BIC logLik
475.8632 504.6506 -229.9316
Random effects:
Formula: list(a ~ 1, c ~ 1)
Level: grouping_factor
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
a.(Intercept) 3.254827e-04 a.(In)
c.(Intercept) 1.248580e-06 0
Residual 5.670317e-01
Fixed effects: a + c ~ treatment
Value Std.Error DF t-value p-value
a.(Intercept) 9.634383 0.2189967 264 43.99329 0.0000
a.treatmentB 0.353342 0.3621573 264 0.97566 0.3301
c.(Intercept) -0.204848 0.0060642 264 -33.77976 0.0000
c.treatmentB -0.092138 0.0120463 264 -7.64867 0.0000
Correlation:
a.(In) a.trtB c.(In)
a.treatmentB -0.605
c.(Intercept) -0.785 0.475
c.treatmentB 0.395 -0.792 -0.503
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.93208903 -0.34340037 0.04767133 0.78924247 1.95516431
Number of Observations: 270
Number of Groups: 3
Then, if you wanted to visualize the model fit, you could do the following.
## Here we store the model predictions for visualization purposes
predictionsDf <- cbind(example_data,
predict_nlme(fit2, interval = 'conf'))
## Here we make a graph to check it out
ggplot()+
geom_ribbon(data = predictionsDf,
aes( x = xvar , ymin = Q2.5, ymax = Q97.5, fill = treatment),
color = NA, alpha = 0.3)+
geom_point(data = example_data, aes( x = xvar, y = y, col = treatment))+
geom_line(data = predictionsDf, aes(x = xvar, y = Estimate, col = treatment), size = 1.1)
This shows the model fit.

Am I able to calculate autograd of NN outputs wrt network inputs in flux.jl?

I have a NN that is a function f:(t, v) -> (x,z). Am I able to calculate an autograd partial derivative df/dt? I want to use the the autograd calculation in a regularization term in my loss function.
yhat = net((t,v))
#calculate current value of df/dt here
penalized_loss(yhat, y) = loss(yhat, y) + penalty(df/dt)
I want to do something like
df/dt = gradient(net,t)
but I don't know how to tell the gradient function what the input (t) is
Based on the documentation, you can use the gradient this way:
function my_custom_train!(loss, ps, data, opt)
ps = Params(ps)
for d in data
gs = gradient(ps) do
loss(d...)
end
update!(opt, ps, gs)
end
end
This gradient(ps) do ... end is the Julian idiom to:
gradient(loss(d...), ps);
gradient comes from Zygote.jl, you can read more about here.
If it is a feed-forward neural network you can use BetaML and in particular copy the getGradient function ("step 1" and "step 2") to retrieve the backward stack up to the inputs.

Fitting a neural network with ReLUs to polynomial functions

Out of curiosity I am trying to fit neural network with rectified linear units to polynomial functions.
For example, I would like to see how easy (or difficult) it is for a neural network to come up with an approximation for the function f(x) = x^2 + x. The following code should be able to do it, but seems to not learn anything. When I run
using Base.Iterators: repeated
ENV["JULIA_CUDA_SILENT"] = true
using Flux
using Flux: throttle
using Random
f(x) = x^2 + x
x_train = shuffle(1:1000)
y_train = f.(x_train)
x_train = hcat(x_train...)
m = Chain(
Dense(1, 45, relu),
Dense(45, 45, relu),
Dense(45, 1),
softmax
)
function loss(x, y)
Flux.mse(m(x), y)
end
evalcb = () -> #show(loss(x_train, y_train))
opt = ADAM()
#show loss(x_train, y_train)
dataset = repeated((x_train, y_train), 50)
Flux.train!(loss, params(m), dataset, opt, cb = throttle(evalcb, 10))
println("Training finished")
#show m([20])
it returns
loss(x_train, y_train) = 2.0100101f14
loss(x_train, y_train) = 2.0100101f14
loss(x_train, y_train) = 2.0100101f14
Training finished
m([20]) = Float32[1.0]
Anyone here sees how I could make the network fit f(x) = x^2 + x?
There seem to be couple of things wrong with your trial that have mostly to do with how you use your optimizer and treat your input -- nothing wrong with Julia or Flux. Provided solution does learn, but is by no means optimal.
It makes no sense to have softmax output activation on a regression problem. Softmax is used in classification problems where the output(s) of your model represent probabilities and therefore should be on the interval (0,1). It is clear your polynomial has values outside this interval. It is usual to have linear output activation in regression problems like these. This means in Flux no output activation should be defined on the output layer.
The shape of your data matters. train! computes gradients for loss(d...) where d is a batch in your data. In your case a minibatch consists of 1000 samples, and this same batch is repeated 50 times. Neural nets are often trained with smaller batches sizes, but a larger sample set. In the code I provided all batches consist of different data.
For training neural nets, in general, it is advised to normalize your input. Your input takes values from 1 to 1000. My example applies a simple linear transformation to get the input data in the right range.
Normalization can also apply to the output. If the outputs are large, this can result in (too) large gradients and weight updates. Another approach is to lower the learning rate a lot.
using Flux
using Flux: #epochs
using Random
normalize(x) = x/1000
function generate_data(n)
f(x) = x^2 + x
xs = reduce(hcat, rand(n)*1000)
ys = f.(xs)
(normalize(xs), normalize(ys))
end
batch_size = 32
num_batches = 10000
data_train = Iterators.repeated(generate_data(batch_size), num_batches)
data_test = generate_data(100)
model = Chain(Dense(1,40, relu), Dense(40,40, relu), Dense(40, 1))
loss(x,y) = Flux.mse(model(x), y)
opt = ADAM()
ps = Flux.params(model)
Flux.train!(loss, ps, data_train, opt , cb = () -> #show loss(data_test...))

Julia vs. MATLAB - Distance Matrix - Run Time Test

I started learning Julia not a long time ago and I decided to do a simple
comparison between Julia and Matlab on a simple code for computing Euclidean
distance matrices from a set of high dimensional points.
The task is simple and can be divided into two cases:
Case 1: Given two datasets in the form of n x d matrices, say X1 and X2, compute the pair wise Euclidean distance between each point in X1 and all the points in X2. If X1 is of size n1 x d, and X2 is of size n2 x d, then the resulting Euclidean distance matrix D will be of size n1 x n2. In the general setting, matrix D is not symmetric, and diagonal elements are not equal to zero.
Case 2: Given one dataset in the form of n x d matrix X, compute the pair wise Euclidean distance between all the n points in X. The resulting Euclidean distance matrix D will be of size n x n, symmetric, with zero elements on the main diagonal.
My implementation of these functions in Matlab and in Julia is given below. Note that none of the implementations rely on loops of any sort, but rather simple linear algebra operations. Also, note that the implementation using both languages is very similar.
My expectations before running any tests for these implementations is that the Julia code will be much faster than the Matlab code, and by a significant margin. To my surprise, this was not the case!
The parameters for my experiments are given below with the code. My machine is a MacBook Pro. (15" Mid 2015) with 2.8 GHz Intel Core i7 (Quad Core), and 16 GB 1600 MHz DDR3.
Matlab version: R2018a
Julia version: 0.6.3
BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell)
LAPACK: libopenblas64_
LIBM: libopenlibm
LLVM: libLLVM-3.9.1 (ORCJIT, haswell)
The results are given in Table (1) below.
Table 1: Average time in seconds (with standard deviation) over 30 trials for computing Euclidean distance matrices between two different datasets (Col. 1),
and between all pairwise points in one dataset (Col. 2).
Two Datasets || One Dataset
Matlab: 2.68 (0.12) sec. 1.88 (0.04) sec.
Julia V1: 5.38 (0.17) sec. 4.74 (0.05) sec.
Julia V2: 5.2 (0.1) sec.
I was not expecting this significant difference between both languages. I expected Julia to be faster than Matlab, or at least, as fast as Matlab. It was really a surprise to see that Matlab is almost 2.5 times faster than Julia in this particular task. I didn't want to draw any early conclusions based on these results for few reasons.
First, while I think that my Matlab implementation is as good as it can be, I'm wondering whether my Julia implementation is the best one for this task. I'm still learning Julia and I hope there is a more efficient Julia code that can yield faster computation time for this task. In particular, where is the main bottleneck for Julia in this task? Or, why does Matlab have an edge in this case?
Second, my current Julia package is based on the generic and standard BLAS and LAPACK packages for MacOS. I'm wondering whether JuliaPro with BLAS and LAPACK based on Intel MKL will be faster than the current version I'm using. This is why I opted to get some feedback from more knowledgeable people on StackOverflow.
The third reason is that I'm wondering whether the compile time for Julia was
included in the timings shown in Table 1 (2nd and 3rd rows), and whether there is a better way to assess the execution time for a function.
I will appreciate any feedback on my previous three questions.
Thank you!
Hint: This question has been identified as a possible duplicate of another question on StackOverflow. However, this is not entirely true. This question has three aspects as reflected by the answers below. First, yes, one part of the question is related to the comparison of OpenBLAS vs. MKL. Second, it turns out that the implementation as well can be improved as shown by one of the answers. And last, bench-marking the julia code itself can be improved by using BenchmarkTools.jl.
MATLAB
num_trials = 30;
dim = 1000;
n1 = 10000;
n2 = 10000;
T = zeros(num_trials,1);
XX1 = randn(n1,dim);
XX2 = rand(n2,dim);
%%% DIFEERENT MATRICES
DD2ds = zeros(n1,n2);
for (i = 1:num_trials)
tic;
DD2ds = distmat_euc2ds(XX1,XX2);
T(i) = toc;
end
mt = mean(T);
st = std(T);
fprintf(1,'\nDifferent Matrices:: dim: %d, n1 x n2: %d x %d -> Avg. Time %f (+- %f) \n',dim,n1,n2,mt,st);
%%% SAME Matrix
T = zeros(num_trials,1);
DD1ds = zeros(n1,n1);
for (i = 1:num_trials)
tic;
DD1ds = distmat_euc1ds(XX1);
T(i) = toc;
end
mt = mean(T);
st = std(T);
fprintf(1,'\nSame Matrix:: dim: %d, n1 x n1 : %d x %d -> Avg. Time %f (+- %f) \n\n',dim,n1,n1,mt,st);
distmat_euc2ds.m
function [DD] = distmat_euc2ds (XX1,XX2)
n1 = size(XX1,1);
n2 = size(XX2,1);
DD = sqrt(ones(n1,1)*sum(XX2.^2.0,2)' + (ones(n2,1)*sum(XX1.^2.0,2)')' - 2.*XX1*XX2');
end
distmat_euc1ds.m
function [DD] = distmat_euc1ds (XX)
n1 = size(XX,1);
GG = XX*XX';
DD = sqrt(ones(n1,1)*diag(GG)' + diag(GG)*ones(1,n1) - 2.*GG);
end
JULIA
include("distmat_euc.jl")
num_trials = 30;
dim = 1000;
n1 = 10000;
n2 = 10000;
T = zeros(num_trials);
XX1 = randn(n1,dim)
XX2 = rand(n2,dim)
DD = zeros(n1,n2)
# Euclidean Distance Matrix: Two Different Matrices V1
# ====================================================
for i = 1:num_trials
tic()
DD = distmat_eucv1(XX1,XX2)
T[i] = toq();
end
mt = mean(T)
st = std(T)
println("Different Matrices V1:: dim:$dim, n1 x n2: $n1 x $n2 -> Avg. Time $mt (+- $st)")
# Euclidean Distance Matrix: Two Different Matrices V2
# ====================================================
for i = 1:num_trials
tic()
DD = distmat_eucv2(XX1,XX2)
T[i] = toq();
end
mt = mean(T)
st = std(T)
println("Different Matrices V2:: dim:$dim, n1 x n2: $n1 x $n2 -> Avg. Time $mt (+- $st)")
# Euclidean Distance Matrix: Same Matrix V1
# =========================================
for i = 1:num_trials
tic()
DD = distmat_eucv1(XX1)
T[i] = toq();
end
mt = mean(T)
st = std(T)
println("Same Matrix V1:: dim:$dim, n1 x n2: $n1 x $n2 -> Avg. Time $mt (+- $st)")
distmat_euc.jl
function distmat_eucv1(XX1::Array{Float64,2},XX2::Array{Float64,2})
(num1,dim1) = size(XX1)
(num2,dim2) = size(XX2)
if (dim1 != dim2)
error("Matrices' 2nd dimensions must agree!")
end
DD = sqrt.((ones(num1)*sum(XX2.^2.0,2)') +
(ones(num2)*sum(XX1.^2.0,2)')' - 2.0.*XX1*XX2');
end
function distmat_eucv2(XX1::Array{Float64,2},XX2::Array{Float64,2})
(num1,dim1) = size(XX1)
(num2,dim2) = size(XX2)
if (dim1 != dim2)
error("Matrices' 2nd dimensions must agree!")
end
DD = (ones(num1)*sum(Base.FastMath.pow_fast.(XX2,2.0),2)') +
(ones(num2)*sum(Base.FastMath.pow_fast.(XX1,2.0),2)')' -
Base.LinAlg.BLAS.gemm('N','T',2.0,XX1,XX2);
DD = Base.FastMath.sqrt_fast.(DD)
end
function distmat_eucv1(XX::Array{Float64,2})
n = size(XX,1)
GG = XX*XX';
DD = sqrt.(ones(n)*diag(GG)' + diag(GG)*ones(1,n) - 2.0.*GG)
end
First question: If I re-write the julia distance function like so:
function dist2(X1::Matrix, X2::Matrix)
size(X1, 2) != size(X2, 2) && error("Matrices' 2nd dimensions must agree!")
return sqrt.(sum(abs2, X1, 2) .+ sum(abs2, X2, 2)' .- 2 .* (X1 * X2'))
end
I shave >40% off the execution time.
For a single dataset you can save a bit more, like this:
function dist2(X::Matrix)
G = X * X'
dG = diag(G)
return sqrt.(dG .+ dG' .- 2 .* G)
end
Third question: You should do your benchmarking with BenchmarkTools.jl, and perform the benchmarking like this (remember $ for variable interpolation):
julia> using BenchmarkTools
julia> #btime dist2($XX1, $XX2);
Additionally, you should not do powers using floats, like this: X.^2.0. It is faster, and equally correct to write X.^2.
For multiplication there is no speed difference between 2.0 .* X and 2 .* X, but you should still prefer using an integer, because it is more generic. As an example, if X has Float32 elements, multiplying with 2.0 will promote the array to Float64s, while multiplying with 2 will preserve the eltype.
And finally, note that in new versions of Matlab, too, you can get broadcasting behaviour by simply adding Mx1 arrays with 1xN arrays. There is no need to first expand them by multiplying with ones(...).

How to estimate goodness-of-fit using scipy.odr?

I am fitting data with weights using scipy.odr but I don't know how to obtain a measure of goodness-of-fit or an R squared. Does anyone have suggestions for how to obtain this measure using the output stored by the function?
The res_var attribute of the Output is the so-called reduced Chi-square value for the fit, a popular choice of goodness-of-fit statistic. It is somewhat problematic for non-linear fitting, though. You can look at the residuals directly (out.delta for the X residuals and out.eps for the Y residuals). Implementing a cross-validation or bootstrap method for determining goodness-of-fit, as suggested in the linked paper, is left as an exercise for the reader.
The output of ODR gives both the estimated parameters beta as well as the standard deviation of those parameters sd_beta. Following p. 76 of the ODRPACK documentation, you can convert these values into a t-statistic with (beta - beta_0) / sd_beta, where beta_0 is the number that you're testing significance with respect to (often zero). From there, you can use the t-distribution to get the p-value.
Here's a working example:
import numpy as np
from scipy import stats, odr
def linear_func(B, x):
"""
From https://docs.scipy.org/doc/scipy/reference/odr.html
Linear function y = m*x + b
"""
# B is a vector of the parameters.
# x is an array of the current x values.
# x is in the same format as the x passed to Data or RealData.
#
# Return an array in the same format as y passed to Data or RealData.
return B[0] * x + B[1]
np.random.seed(0)
sigma_x = .1
sigma_y = .15
N = 100
x_star = np.linspace(0, 10, N)
x = np.random.normal(x_star, sigma_x, N)
# the true underlying function is y = 2*x_star + 1
y = np.random.normal(2*x_star + 1, sigma_y, N)
linear = odr.Model(linear_func)
dat = odr.Data(x, y, wd=1./sigma_x**2, we=1./sigma_y**2)
this_odr = odr.ODR(dat, linear, beta0=[1., 0.])
odr_out = this_odr.run()
# degrees of freedom are n_samples - n_parameters
df = N - 2 # equivalently, df = odr_out.iwork[10]
beta_0 = 0 # test if slope is significantly different from zero
t_stat = (odr_out.beta[0] - beta_0) / odr_out.sd_beta[0] # t statistic for the slope parameter
p_val = stats.t.sf(np.abs(t_stat), df) * 2
print('Recovered equation: y={:3.2f}x + {:3.2f}, t={:3.2f}, p={:.2e}'.format(odr_out.beta[0], odr_out.beta[1], t_stat, p_val))
Recovered equation: y=2.00x + 1.01, t=239.63, p=1.76e-137
One note of caution in using this approach on nonlinear problems, from the same ODRPACK docs:
"Note that for nonlinear ordinary least squares, the linearized confidence regions and intervals are asymptotically correct as n → ∞ [Jennrich, 1969]. For the orthogonal distance regression problem, they have been shown to be asymptotically correct as σ∗ → 0 [Fuller, 1987]. The difference between the conditions of asymptotic correctness can be explained by the fact that, as the number of observations increases in the orthogonal distance regression problem one does not obtain additional information for ∆. Note also that Vˆ is dependent upon the weight matrix Ω, which must be assumed to be correct, and cannot be confirmed from the orthogonal distance regression results. Errors in the values of wǫi and wδi that form Ω will have an adverse affect on the accuracy of Vˆ and its component parts. The results of a Monte Carlo experiment examining the accuracy
of the linearized confidence intervals for four different measurement error models is presented in [Boggs and Rogers, 1990b]. Those results indicate that the confidence regions and intervals for ∆ are not as accurate as those for β.
Despite its potential inaccuracy, the covariance matrix is frequently used to construct confidence regions and intervals for both nonlinear ordinary least squares and measurement error models because the resulting regions and intervals are inexpensive to compute, often adequate, and familiar to practitioners. Caution must be exercised when using such regions and intervals, however, since the validity of the approximation will depend on the nonlinearity of the model, the variance and distribution of the errors, and the data itself. When more reliable intervals and regions are required, other more accurate methods should be used. (See, e.g., [Bates and Watts, 1988], [Donaldson and Schnabel, 1987], and [Efron, 1985].)"
As mentioned by R. Ken, chi-square or variance of the residuals is one of the more
commonly used tests of goodness of fit. ODR stores the sum of squared
residuals in out.sum_square and you can verify yourself
that out.res_var = out.sum_square/degrees_freedom corresponds to what is commonly called reduced chi-square: i.e. the chi-square test result divided by its expected value.
As for the other very popular estimator of goodness of fit in linear regression, R squared and its adjusted version, we can define the functions
import numpy as np
def R_squared(observed, predicted, uncertainty=1):
""" Returns R square measure of goodness of fit for predicted model. """
weight = 1./uncertainty
return 1. - (np.var((observed - predicted)*weight) / np.var(observed*weight))
def adjusted_R(x, y, model, popt, unc=1):
"""
Returns adjusted R squared test for optimal parameters popt calculated
according to W-MN formula, other forms have different coefficients:
Wherry/McNemar : (n - 1)/(n - p - 1)
Wherry : (n - 1)/(n - p)
Lord : (n + p - 1)/(n - p - 1)
Stein : (n - 1)/(n - p - 1) * (n - 2)/(n - p - 2) * (n + 1)/n
"""
# Assuming you have a model with ODR argument order f(beta, x)
# otherwise if model is of the form f(x, a, b, c..) you could use
# R = R_squared(y, model(x, *popt), uncertainty=unc)
R = R_squared(y, model(popt, x), uncertainty=unc)
n, p = len(y), len(popt)
coefficient = (n - 1)/(n - p - 1)
adj = 1 - (1 - R) * coefficient
return adj, R
From the output of your ODR run you can find the optimal values for your model's parameters in out.beta and at this point we have everything we need for computing R squared.
from scipy import odr
def lin_model(beta, x):
"""
Linear function y = m*x + q
slope m, constant term/y-intercept q
"""
return beta[0] * x + beta[1]
linear = odr.Model(lin_model)
data = odr.RealData(x, y, sx=sigma_x, sy=sigma_y)
init = odr.ODR(data, linear, beta0=[1, 1])
out = init.run()
adjusted_Rsq, Rsq = adjusted_R(x, y, lin_model, popt=out.beta)