I'm reading a dataset as spark sql dataframe of shape(70000,38) using read.csv and then write to disk as parquet/csv using dataframe.write, It is not throwing any error, all fine!
When I read the dataset as spark sql dataframe of shape(70000,38), do some ETL operations and trying to write the spark sql dataframe of shape (80000,40) to disk as parquet/csv using dataframe.write, It is throwing error.
Could this be the reason? My resources got exhausted during ETL operations and unable to write the dataframe to disk.
My pyspark session configuration is
[('spark.rdd.compress', 'True'),
('spark.driver.port', '54782'),
('spark.app.id', 'local-1585668573104'),
('spark.serializer.objectStreamReset', '100'),
('spark.master', 'local[*]'),
('spark.submit.pyFiles', ''),
('spark.executor.id', 'driver'),
('spark.submit.deployMode', 'client'),
('spark.ui.showConsoleProgress', 'true'),
('spark.rpc.message.maxSize', '1024'),
('spark.app.name', 'pyspark-shell'),
('spark.driver.host', XXXXXXXXXXX.net')]
system configuration 8 cores/cpu's and 8gb memory/ram
will be grateful for any solution
Py spark commands
filepath = directory path of file to be saved
dataframe.write.format('csv').option("header", "true").save(filepath)
Traceback of Error
Py4JJavaError: An error occurred while calling o568.save.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:226)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:178)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:123)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:173)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:211)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:208)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:169)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:110)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:109)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand$1(DataFrameWriter.scala:828)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$4(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:87)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:828)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:309)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:293)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:236)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 6.0 failed 1 times, most recent failure: Lost task 2.0 in stage 6.0 (TID 235, IN2391797W1.ey.net, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "C:\spark\spark-3.0.0-preview2-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 577, in main
File "C:\spark\spark-3.0.0-preview2-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", line 835, in read_int
length = stream.read(4)
File "C:\Users\Sravan.Tallozu\AppData\Local\Continuum\anaconda3\lib\socket.py", line 589, in readinto
return self._sock.recv_into(b)
socket.timeout: timed out
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:484)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.read(PythonUDFRunner.scala:81)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.read(PythonUDFRunner.scala:64)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:437)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:489)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage6.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:726)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage8.agg_doAggregateWithKeys_0$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage8.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:726)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:132)
at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:441)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:444)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:1989)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:1977)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:1976)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1976)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:956)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:956)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:956)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2206)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2155)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2144)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:758)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2116)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:195)
30 more
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "C:\spark\spark-3.0.0-preview2-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 577, in main
File "C:\spark\spark-3.0.0-preview2-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", line 835, in read_int
length = stream.read(4)
File "C:\Users\Sravan.Tallozu\AppData\Local\Continuum\anaconda3\lib\socket.py", line 589, in readinto
return self._sock.recv_into(b)
socket.timeout: timed out
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:484)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.read(PythonUDFRunner.scala:81)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.read(PythonUDFRunner.scala:64)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:437)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:489)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage6.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:726)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage8.agg_doAggregateWithKeys_0$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage8.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:726)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:132)
at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:441)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:444)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
1 more
Related
I have a Pyspark job which reads about 1M record from upstream data source and and tries to add it to SQL. I am using Pyspark 3.1 with Pyspark sql connector and when writing anything over 2K records into SQL it returns me the error that connection closed (: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 8.0 failed 4 times, most recent failure: Lost task 0.3 in stage 8.0 (TID 11) (vm-1286783 executor 1): com.microsoft.sqlserver.jdbc.SQLServerException: The connection is closed)
I am not repartitioning the data from upstream when writing to SQL. Also this job will be run on Azure Synapse in Spark Pool.
These are the options I`m using for the SQL connector:
"schemaCheckEnabled": "false",
"url": "test-url",
"hostNameInCertificate": "*.database.windows.net",
"database": "testdb",
"dbtable": "testtable",
"batchsize": "5000",
"tableLock": "true",
"queryTimeout": "0",
"reliabilityLevel": "BEST_EFFORT"
This is the pyspark config:
"driver_cores": 4,
"driver_memory": "20g",
"executor_memory": "32g",
"num_executors": 24,
"executor_cores": 5,
Any help would be appreciated.
This is the complete stack trace:
2022-09-08 05:53:22,146 - __main__ - WARNING - An error occurred while calling o1179.save.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 9.0 failed 4 times, most recent failure: Lost task 1.3 in stage 9.0 (TID 23) (vm-24f65417 executor 2): com.microsoft.sqlserver.jdbc.SQLServerException: The connection is closed.
at com.microsoft.sqlserver.jdbc.SQLServerException.makeFromDriverError(SQLServerException.java:234)
at com.microsoft.sqlserver.jdbc.SQLServerConnection.checkClosed(SQLServerConnection.java:1202)
at com.microsoft.sqlserver.jdbc.SQLServerConnection.rollback(SQLServerConnection.java:3442)
at com.microsoft.sqlserver.jdbc.spark.BulkCopyUtils$.savePartition(BulkCopyUtils.scala:68)
at com.microsoft.sqlserver.jdbc.spark.SingleInstanceWriteStrategies$.$anonfun$write$2(BestEffortSingleInstanceStrategy.scala:43)
at com.microsoft.sqlserver.jdbc.spark.SingleInstanceWriteStrategies$.$anonfun$write$2$adapted(BestEffortSingleInstanceStrategy.scala:42)
at org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2(RDD.scala:1027)
at org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2$adapted(RDD.scala:1027)
at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2341)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:498)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:501)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2313)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2262)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2261)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2261)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1132)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1132)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1132)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2500)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2442)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2431)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:908)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2301)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2322)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2341)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2366)
at org.apache.spark.rdd.RDD.$anonfun$foreachPartition$1(RDD.scala:1027)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:415)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:1025)
at com.microsoft.sqlserver.jdbc.spark.SingleInstanceWriteStrategies$.write(BestEffortSingleInstanceStrategy.scala:42)
at com.microsoft.sqlserver.jdbc.spark.SingleInstanceConnector$.writeInParallel(SingleInstanceConnector.scala:35)
at com.microsoft.sqlserver.jdbc.spark.Connector.write(Connector.scala:80)
at com.microsoft.sqlserver.jdbc.spark.DefaultSource.createRelation(DefaultSource.scala:66)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:46)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:90)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:218)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:256)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:253)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:214)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:148)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:147)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand$1(DataFrameWriter.scala:1013)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:107)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:181)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:94)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:68)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:1013)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:462)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:434)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:303)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:750)
Caused by: com.microsoft.sqlserver.jdbc.SQLServerException: The connection is closed.
at com.microsoft.sqlserver.jdbc.SQLServerException.makeFromDriverError(SQLServerException.java:234)
at com.microsoft.sqlserver.jdbc.SQLServerConnection.checkClosed(SQLServerConnection.java:1202)
at com.microsoft.sqlserver.jdbc.SQLServerConnection.rollback(SQLServerConnection.java:3442)
at com.microsoft.sqlserver.jdbc.spark.BulkCopyUtils$.savePartition(BulkCopyUtils.scala:68)
at com.microsoft.sqlserver.jdbc.spark.SingleInstanceWriteStrategies$.$anonfun$write$2(BestEffortSingleInstanceStrategy.scala:43)
at com.microsoft.sqlserver.jdbc.spark.SingleInstanceWriteStrategies$.$anonfun$write$2$adapted(BestEffortSingleInstanceStrategy.scala:42)
at org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2(RDD.scala:1027)
at org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2$adapted(RDD.scala:1027)
at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2341)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:498)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:501)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
I have installed Delta Lake package(delta-spark) in Zeppelin env and added delta-core dependency to spark - io.delta:delta-core_2.12:1.0.0.
Versions are as follows, I suppose I'm using the right delta-core version:
spark: 3.1.1.
scala: 2.12.10
Now, the delta module can be imported successfully. However, once I try to write or read data in delta format, it throws errors. Anyone knows what might go wrong here or how to fix it? Thanks!
For the following code:
%spark.pyspark
from delta import *
builder = SparkSession.builder.appName("MyApp") \
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") \
.config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog")
spark = configure_spark_with_delta_pip(builder).getOrCreate()
data = spark.range(0, 5)
data.write.format("delta").save("hdfs://my-hdfs-namenode-0.my-hdfs-namenode.hdfs-explore.svc.cluster.local/tmp/delta-table-1")
It shows error happens in the last line with "java.lang.ClassNotFoundException: org.apache.spark.sql.delta.files.DelayedCommitProtocol":
Py4JJavaError: An error occurred while calling o122.save.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:231)
at org.apache.spark.sql.delta.files.TransactionalWrite.$anonfun$writeFiles$1(TransactionalWrite.scala:192)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.delta.files.TransactionalWrite.writeFiles(TransactionalWrite.scala:163)
at org.apache.spark.sql.delta.files.TransactionalWrite.writeFiles$(TransactionalWrite.scala:142)
at org.apache.spark.sql.delta.OptimisticTransaction.writeFiles(OptimisticTransaction.scala:84)
at org.apache.spark.sql.delta.files.TransactionalWrite.writeFiles(TransactionalWrite.scala:135)
at org.apache.spark.sql.delta.files.TransactionalWrite.writeFiles$(TransactionalWrite.scala:134)
at org.apache.spark.sql.delta.OptimisticTransaction.writeFiles(OptimisticTransaction.scala:84)
at org.apache.spark.sql.delta.commands.WriteIntoDelta.write(WriteIntoDelta.scala:107)
at org.apache.spark.sql.delta.commands.WriteIntoDelta.$anonfun$run$1(WriteIntoDelta.scala:66)
at org.apache.spark.sql.delta.commands.WriteIntoDelta.$anonfun$run$1$adapted(WriteIntoDelta.scala:65)
at org.apache.spark.sql.delta.DeltaLog.withNewTransaction(DeltaLog.scala:187)
at org.apache.spark.sql.delta.commands.WriteIntoDelta.run(WriteIntoDelta.scala:65)
at org.apache.spark.sql.delta.sources.DeltaDataSource.createRelation(DeltaDataSource.scala:154)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:46)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:90)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:132)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:131)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand$1(DataFrameWriter.scala:989)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:989)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:438)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:409)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:293)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 2.0 failed 4 times, most recent failure: Lost task 1.3 in stage 2.0 (TID 21) (10.80.3.38 executor 2): java.lang.ClassNotFoundException: org.apache.spark.sql.delta.files.DelayedCommitProtocol
at org.apache.spark.repl.ExecutorClassLoader.findClass(ExecutorClassLoader.scala:124)
at java.base/java.lang.ClassLoader.loadClass(Unknown Source)
at java.base/java.lang.ClassLoader.loadClass(Unknown Source)
at java.base/java.lang.Class.forName0(Native Method)
at java.base/java.lang.Class.forName(Unknown Source)
at org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:68)
at java.base/java.io.ObjectInputStream.readNonProxyDesc(Unknown Source)
at java.base/java.io.ObjectInputStream.readClassDesc(Unknown Source)
at java.base/java.io.ObjectInputStream.readOrdinaryObject(Unknown Source)
at java.base/java.io.ObjectInputStream.readObject0(Unknown Source)
at java.base/java.io.ObjectInputStream.readArray(Unknown Source)
at java.base/java.io.ObjectInputStream.readObject0(Unknown Source)
at java.base/java.io.ObjectInputStream.defaultReadFields(Unknown Source)
at java.base/java.io.ObjectInputStream.readSerialData(Unknown Source)
at java.base/java.io.ObjectInputStream.readOrdinaryObject(Unknown Source)
at java.base/java.io.ObjectInputStream.readObject0(Unknown Source)
at java.base/java.io.ObjectInputStream.defaultReadFields(Unknown Source)
at java.base/java.io.ObjectInputStream.readSerialData(Unknown Source)
at java.base/java.io.ObjectInputStream.readOrdinaryObject(Unknown Source)
at java.base/java.io.ObjectInputStream.readObject0(Unknown Source)
at java.base/java.io.ObjectInputStream.readObject(Unknown Source)
at java.base/java.io.ObjectInputStream.readObject(Unknown Source)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:76)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:115)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:83)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.base/java.lang.Thread.run(Unknown Source)
Caused by: java.lang.ClassNotFoundException: org.apache.spark.sql.delta.files.DelayedCommitProtocol
at java.base/java.lang.ClassLoader.findClass(Unknown Source)
at org.apache.spark.util.ParentClassLoader.findClass(ParentClassLoader.java:35)
at java.base/java.lang.ClassLoader.loadClass(Unknown Source)
at org.apache.spark.util.ParentClassLoader.loadClass(ParentClassLoader.java:40)
at java.base/java.lang.ClassLoader.loadClass(Unknown Source)
at org.apache.spark.repl.ExecutorClassLoader.findClass(ExecutorClassLoader.scala:109)
... 31 more
I guess the main issue here is that your cluster doesn't see the jar file of delta lake. If you added dependency using zeppelin spark interpreter, it has an impact only on Apache Zeppelin. You should upload the jar file of delta lake to /usr/lib/spark/jars/ in your cluster. The jar file can be downloaded from here.
I've just started learning pyspark using standalone on local machine. I can't get the checkpoint to work. I boiled down the script to this....
spark = SparkSession.builder.appName("PyTest").master("local[*]").getOrCreate()
spark.sparkContext.setCheckpointDir("/RddCheckPoint")
df = spark.createDataFrame(["10","11","13"], "string").toDF("age")
df.checkpoint()
and I get this output...
>>> spark = SparkSession.builder.appName("PyTest").master("local[*]").getOrCreate()
>>>
>>> spark.sparkContext.setCheckpointDir("/RddCheckPoint")
>>> df = spark.createDataFrame(["10","11","13"], "string").toDF("age")
>>> df.checkpoint()
20/01/24 15:26:45 WARN SizeEstimator: Failed to check whether UseCompressedOops is set; assuming yes
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "N:\spark\python\pyspark\sql\dataframe.py", line 463, in checkpoint
jdf = self._jdf.checkpoint(eager)
File "N:\spark\python\lib\py4j-0.10.8.1-src.zip\py4j\java_gateway.py", line 1286, in __call__
File "N:\spark\python\pyspark\sql\utils.py", line 98, in deco
return f(*a, **kw)
File "N:\spark\python\lib\py4j-0.10.8.1-src.zip\py4j\protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o71.checkpoint.
: java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:645)
at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:1230)
at org.apache.hadoop.fs.FileUtil.list(FileUtil.java:1435)
at org.apache.hadoop.fs.RawLocalFileSystem.listStatus(RawLocalFileSystem.java:493)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1868)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1910)
at org.apache.hadoop.fs.ChecksumFileSystem.listStatus(ChecksumFileSystem.java:678)
at org.apache.spark.rdd.ReliableCheckpointRDD.getPartitions(ReliableCheckpointRDD.scala:74)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.rdd.ReliableCheckpointRDD$.writeRDDToCheckpointDirectory(ReliableCheckpointRDD.scala:179)
at org.apache.spark.rdd.ReliableRDDCheckpointData.doCheckpoint(ReliableRDDCheckpointData.scala:59)
at org.apache.spark.rdd.RDDCheckpointData.checkpoint(RDDCheckpointData.scala:75)
at org.apache.spark.rdd.RDD.$anonfun$doCheckpoint$1(RDD.scala:1801)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDD.doCheckpoint(RDD.scala:1791)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2118)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2137)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2156)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2181)
at org.apache.spark.rdd.RDD.count(RDD.scala:1227)
at org.apache.spark.sql.Dataset.$anonfun$checkpoint$1(Dataset.scala:689)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3472)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$4(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:87)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3468)
at org.apache.spark.sql.Dataset.checkpoint(Dataset.scala:680)
at org.apache.spark.sql.Dataset.checkpoint(Dataset.scala:643)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
The error doesn't give any specifics about why it failed. I suspect I have missed some spark config but not sure what...
You have this error because either is not created the checkpoint directory or you don't have permissions to write in this directory (because the checkpoint directory is under the root directory "/").
import os
os.mkdir("RddCheckPoint")
spark = SparkSession.builder.appName("PyTest").master("local[*]").getOrCreate()
spark.sparkContext.setCheckpointDir("RddCheckPoint")
df = spark.createDataFrame(["10","11","13"], "string").toDF("age")
df.checkpoint()
I am trying to write a spark DF to a single csv file. Normally, I use this call which works:
df.coalesce(1).write.mode("overwrite").csv(file_path, sep=",", header=True)
BUT I have run into an instance where this errors out and I get the message "the file already exists". From the digging I've done this is a pyspark retry and the actual failure is in the logs. However, looking in the container logs I don't see anything that points to a reason for the failure. I have resolved this issue, but I am looking for an explanation of why this solves the problem. Running this command:
df.repartition(1).write.mode("overwrite").csv(file_path, sep=",", header=True)
will successfully save a single csv file to the specified path.
I have looked at difference between coalesce and repartition (it has to do with adding to existing partitions vs a full shuffle), but I don't understand how this solves the above issue.
EDIT, adding the full error message:
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:196)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:668)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:276)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:270)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:228)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:656)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 148.0 failed 4 times, most recent failure: Lost task 0.3 in stage 148.0 (TID 10599, ip-172-31-42-50.ec2.internal, executor 140): org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<PATH>/part-00000-a7dc7464-838c-4fd6-962c-899bb58548dc-c000.csv
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:810)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:212)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStream(CodecStreams.scala:81)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStreamWriter(CodecStreams.scala:92)
at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.<init>(CSVFileFormat.scala:177)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anon$1.newInstance(CSVFileFormat.scala:85)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2039)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2027)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2026)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2026)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2260)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2209)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2198)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:166)
... 33 more
Caused by: org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<PATH>/part-00000-a7dc7464-838c-4fd6-962c-899bb58548dc-c000.csv
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:810)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:212)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStream(CodecStreams.scala:81)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStreamWriter(CodecStreams.scala:92)
at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.<init>(CSVFileFormat.scala:177)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anon$1.newInstance(CSVFileFormat.scala:85)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Traceback (most recent call last):
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 929, in csv
self._jwrite.csv(path)
File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o815.csv.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:196)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:668)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:276)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:270)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:228)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:656)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 148.0 failed 4 times, most recent failure: Lost task 0.3 in stage 148.0 (TID 10599, ip-172-31-42-50.ec2.internal, executor 140): org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<PATH>part-00000-a7dc7464-838c-4fd6-962c-899bb58548dc-c000.csv
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:810)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:212)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStream(CodecStreams.scala:81)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStreamWriter(CodecStreams.scala:92)
at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.<init>(CSVFileFormat.scala:177)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anon$1.newInstance(CSVFileFormat.scala:85)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2039)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2027)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2026)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2026)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2260)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2209)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2198)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:166)
... 33 more
Caused by: org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<PATH>/part-00000-a7dc7464-838c-4fd6-962c-899bb58548dc-c000.csv
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:810)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:212)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStream(CodecStreams.scala:81)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStreamWriter(CodecStreams.scala:92)
at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.<init>(CSVFileFormat.scala:177)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anon$1.newInstance(CSVFileFormat.scala:85)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more```
I have a Spark program that converts cobol copybook data into XML when i try to run this i get errors like java.io.EOFException i googled it a lot but did not get much helpful links.
I have a sample file which is flat file(.bin file) and that i am able to convert comfortably into xml from copybook format. But i have another file which is flat file which is at this location
cobol Copybook file is kept at file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/edited1.cbl
file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/xyz_Input
When i run the program with my flat file i get errors
The error is like this
20:37:29.653 ERROR org.apache.spark.scheduler.TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): java.io.EOFException
at java.io.DataInputStream.readFully(Unknown Source)
at java.io.DataInputStream.readFully(Unknown Source)
at org.apache.spark.input.FixedLengthBinaryRecordReader.nextKeyValue(FixedLengthBinaryRecordReader.scala:118)
at org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:207)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(generated.java:41)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(generated.java:63)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1533)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1521)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1520)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1520)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1748)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1703)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1692)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2094)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:278)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2439)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2438)
at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2846)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2845)
at org.apache.spark.sql.Dataset.count(Dataset.scala:2438)
at za.co.absa.cobrix.spark.cobol.examples.CobolSparkExample1$.main(CobolSparkExample1.scala:54)
at za.co.absa.cobrix.spark.cobol.examples.CobolSparkExample1.main(CobolSparkExample1.scala)
Caused by: java.io.EOFException
at java.io.DataInputStream.readFully(Unknown Source)
at java.io.DataInputStream.readFully(Unknown Source)
at org.apache.spark.input.FixedLengthBinaryRecordReader.nextKeyValue(FixedLengthBinaryRecordReader.scala:118)
at org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:207)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(generated.java:41)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(generated.java:63)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
package za.co.absa.cobrix.spark.cobol.examples
import org.apache.spark.sql.{SaveMode, SparkSession}
import za.co.absa.cobrix.spark.cobol.utils.SparkUtils
import com.databricks.spark.xml._
object CobolSparkExample1 {
def main(args: Array[String]): Unit = {
val sparkBuilder = SparkSession.builder().appName("Cobol source reader example 1")
val spark = sparkBuilder
.master("local[*]")
.getOrCreate()
val df = spark
.read
.format("za.co.absa.cobrix.spark.cobol.source")
.option("copybook", "file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/edited1.cbl")
.load("file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/xyz_Input")
df.printSchema()
println(df.count)
df.write
.format("com.databricks.spark.xml")
//.option(rowTag = "book", rootTag ="book")
//.option("book", "book")
.save("file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/Output/newbooks.xml")
}
}
Input source file is like this
ACHFOUND 079675882 1446320661365001Y00000 000M 8019721193 ACHFOUND 6613-144632 000875 <EOR>
ACHFOUND 079675882 1446320661365001Y10000 S10 ACHFOUND 875079675882 144632 11180524180525SAFEWAY 21130 8019721193 ACHFOUND 1805241300000000000087500000000180524144632 BTALBERTSONS COMPANIES, LLC 9 0091372096500NATIONAL SERVICES CENTER P.O. BOX 29093 PHOENIX AZ85038 STALBERTSONS LLC A SUB. OF ALBERTSONS COMPANIES, LLC 9 0091372096613 <EOR>