Should I decrease max_connections in PostgreSQL when using PgBouncer? - postgresql

Why shall I decrease max_connections in PostgreSQL when I use PgBouncer? Will there be a difference if I set max_connections in PostgreSQL's config equal 100 or 1000 when I use PgBouncer to limit connections below either?

Each possible connection reserves some resources in shared memory, and some backend private memory is also scaled to it. Reserving this memory when it will never be used is a waste of resources. This was more of an issue in the past, when shared memory resources were much more fiddly than they are on modern OS.
Also, there is some code which needs to iterate over all of those resources, possibly while holding locks, so it takes more time to do that if there is more data to iterate over. The exact nature of the iteration and locks have changed from version to version, as code was optimized to make it more scalable to large number of CPUs.
Neither of these effects is likely to be huge when the most of the possible connections are not actually used. Maybe the most important reason to lower max_connections is to get instant diagnosis in case pgbouncer has been misconfigured and is not doing its job correctly.

Related

PostgreSQL benchmarking over a RAMdisk?

I have been considering the idea of moving to a RAMdisk for a while. I know its risks, but just wanted to do a little benchmark. I just had two questions: (a) when reading the query plan, will it still differentiate between disk and buffers hits? If so, should I assume that both are equally expensive or should I assume that there is a difference between them?
(b) a RAM disk is not persistent, but if I want to export some results to persistent storage, are there some precautions I would need to take? Is it the same as usual e.g. COPY command?
I do not recommend using RAM disks in PostgreSQL for persistent storage. With careful tuning, you can get PostgreSQL not to use more disk I/O than what is required to make your data persistent.
I recommend doing this:
Have more RAM in your machine than the size of the database.
Define shared_buffers big enough to contain the database (on Linux, define memory hugepages to contain them).
Increase checkpoint_timeout and max_wal_size to get fewer checkpoints.
Set synchronous_commit = off to keep PostgreSQL from syncing WAL to disk on every commit.
If you are happy to lose all your data in the case of a crash, define your tables UNLOGGED. The data will survive a normal shutdown.
Anyway, to answer your questions:
(a) You should set seq_page_cost and random_page_cost way lower to tell PostgreSQL how fast your storage is.
(b) You could run backups with either pg_dump or pg_basebackup, they don't care what kind of storage you have got.
when reading the query plan, will it still differentiate between disk and buffers hits?
It never distinguished between them in the first place. It distinguishes between "hit" and "read", but the "read" can't tell which are truly from disk and which are from OS/FS cache.
PostgreSQL has no idea you are running on a RAM disk, so will continue to report those as it always has.
If so, should I assume that both are equally expensive or should I assume that there is a difference between them?
This is a question that should be answered through your benchmarking. On some systems, memory can be read-ahead from main memory into the faster caches, making sequential reads still faster than random reads. If you care, you will have to benchmark it on your own system.
Reading data from RAM into shared_buffers is still surprisingly expensive due to things like lock management. So as a rough starting point, maybe seq_page_cost=0.1 and random_page_cost=0.15.
a RAM disk is not persistent, but if I want to export some results to persistent storage, are there some precautions I would need to take?
The risk would be that your system crashes before the export has finished. But what precaution can you take against that?

Rule of thumb for Max Postgres connections to set?

As a rule of thumb, how many max connections should I set my Postgres server to have? For instance, if I have 8 GB of memory, and quad core 3.2 GHZ machine, and the server is dedicated to only Postgres, how many max connections would be safe?
There is no real rule of thumb since it really depends on your load.
If you do lots of tiny queries than you can easily increase the amount of connections.
If you have a few heavy queries, than you will probably increase the work_mem so you'll run out of memory with a lot of connections.
The basic thing is:
don't have more connections than your memory allows.
don't kill and recreate connections if possible (pgbouncer springs to mind)

What happens when you Postgres shared_buffers is too small?

In the Postgres documentation, it says the parameter "shared_buffers" sets the amount of memory the database server uses for shared memory buffers. I know if this value is too high, then the database server might use too much memory than what is available, and may cause paging to occur.
However, what happens if this value is too low? Would the database just crash if it didn't have enough memory for an intensive query? Specifically, what would it lead to? High IO wait times? High CPU usage?
It won't crash; it may perform poorly.

Postgres causing swapping on CentOS

All,
I am running CentOS 6.0 with Postgresql 8.4 and can't seem to figure out how to prevent so much disc swap from occurring. I have 12 gigs of RAM and 4 processors and I am doing some simple updates (1 table at a time). I thought for a minute that the inserts happening in parallel from a script I wrong was causing the large memory usage but when I saw the simple update causing it too I basically threw in the towel and decided to ask for help.
I pasted the conf file here. http://pastebin.com/e0jdBu0J
You can see that I set the buffers relatively low and the connection amounts high. The DB service will not start if I set the shared buffers any higher than 64 megs. Anyone have an idea what may be causing this for me?
Thanks,
Adam
If you're going into swap, increasing shared_buffers will make the problem worse; you'll be taking RAM away from the part that's running out and swapping, instead dedicating memory to the database caching. It's worth fixing SHMMAX etc. just on general principle and for later tuning work, but that's not going to help with this problem.
Guessing at the identify of your memory gobbling source is a crapshoot. Far better to look at data from "top -c" and ps to find which processes are using a lot of it. It's possible for a really bad query to consume way more memory than it should. If you see memory use spike up for a PostgreSQL process running something, check the process ID against the information in pg_stat_tables to see what it's doing.
There are a couple of things that can cause this sort of issue that often surprise people. If you are doing a large number of row updates in a single transaction, and there are foreign key checks or triggers involved, that can run out of memory. The queue of things to check in each of those cases is kept in RAM, and can be surprisingly big.
There are two problems with your PostgreSQL settings that might be related. Databases don't actually work very well if you have a lot more active connections than cores in the server; best performance is normally 2 to 3 active clients per core. And all sorts of things go wrong once you've got more than a few hundred connection. There is some connections^2 behavior that gets ugly there performance wise, and there are some memory issues too. If you really need 1250 connections, you should be using a connection pooler such as pgBouncer or pgpool-II.
And effective_io_concurrency = 1000 is way too high for any hardware on the planet. Useful values for that in a small multiple of how many disks you have in the server. I have no idea what happens as far as memory usage goes when you set it that high, but it's not been tested very well at that range. Normal settings more like 1 to 25. The parameters outlined at Tuning Your PostgreSQL Server are much more important than it is; the concurrency value only impacts one particular type of table scan.
Centos 6 seems to have a very conservative shmmax as a default
Set your shared buffers to that recommended by postgres tuning resources
see for explanation and how to set.
To experiment you can (as root) use sysctl -w kernel.shmmax = n
where n is the value that the startup error message that postgres is trying to allocate on startup. When you identify the value you wish to use permanently then set that in /etc/sysctl.conf

PostgreSQL consuming large amount of memory for persistent connection

I have a C++ application which is making use of PostgreSQL 8.3 on Windows. We use the libpq interface.
We have a multi-threaded app where each thread opens a connection and keeps using without PQFinish it.
We notice that for each query (especially the SELECT statements) postgres.exe memory consumption would go up. It goes up as high as 1.3 GB. Eventually, postgres.exe crashes and forces our program to create a new connection.
Has anyone experienced this problem before?
EDIT: shared_buffer is currently set to be 128MB in our conf. file.
EDIT2: a workaround that we have in place right now is to call PQfinish for every transaction. But then, this slows down our processing a bit since establishing a connection every time is quite slow.
In PostgreSQL, each connection has a dedicated backend. This backend not only holds connection and session state, but is also an execution engine. Backends aren't particularly cheap to leave lying around, and they cost both memory and synchronization overhead even when idle.
There's an optimum number of actively working backends for any given Pg server on any given workload, where adding more working backends slows things down rather than speeding it up. You want to find that point, and limit the number of backends to around that level. Unfortunately there's no magic recipe for this, it mostly involves benchmarking - on your hardware and with your workload.
If you need more connections than that, you should use a proxy or pooling system that allows you to separate "connection state" from "execution engine". Two popular choices are PgBouncer and PgPool-II . You can maintain light-weight connections from your app to the proxy/pooler, and let it schedule the workload to keep the database server working at its optimum load. If too many queries come in, some wait before being executed instead of competing for resources and slowing down all queries on the server.
See the postgresql wiki.
Note that if your workload is read-mostly, and especially if it has items that don't change often for which you can determine a reliable cache invalidation scheme, you can also potentially use memcached or Redis to reduce your database workload. This requires application changes. PostgreSQL's LISTEN and NOTIFY will help you do sane cache invalidation.
Many database engines have some separation of execution engine and connection state built in to the core database engine's design. Sybase ASE certainly does, and I think Oracle does too, but I'm not too sure about the latter. Unfortunately, because of PostgreSQL's one-process-per-connection model it's not easy for it to pass work around between backends, making it harder for PostgreSQL to do this natively, so most people use a proxy or pool.
I strongly recommend that you read PostgreSQL High Performance. I don't have any relationship/affiliation with Greg Smith or the publisher*, I just think it's great and will be very useful if you're concerned about your DB's performance.
* ... well, I didn't when I wrote this. I work for the same company now.
The memory usage is not necessarily a problem. PostgreSQL uses shared memory for some caching, and this memory does not count towards the size of the process memory usage until it's actually used. The more you use the process, the larger parts of the shared buffers will be active in it's address space.
If you have a large value for shared_buffers, this will happen. If you have it too large, the process can run out of address space and crash, yes.
The problem is probably that you don't close the transaction,
In PostgreSQL even if you do only selects without DML it runs in transaction which need to be rollback.
By adding rollback at the end of the transaction will reduce your memory problem