I am trying to build a simple perceptron. Right now I am just trying to find the weight values for the training data set to make sure it is working, but it will not converge no matter how many epochs I use.
here's the code:
`
var inputs = [];
inputs[0] = [15, 30, 1];
inputs[1] = [45, 90, -1];
inputs[2] = [64, 120, -1];
inputs[3] = [21, 40, 1];
inputs[4] = [9, 18, 1];
var weights = [0,0];
var epochs = 100;
var lRate = 0.1;
var bias = 12;
function weighted_sum(inputs, weights)
{
var products = [];
var weightedSum = 0;
for (var i = 0; i < weights.length; i++)
{
products.push(inputs[i]*weights[i]);
}
for (var i = 0; i < products.length; i++)
{
weightedSum += products[i];
}
return weightedSum;
}
function activate(weightedSum)
{
if (weightedSum >= 0)
{
return 1;
}
else
{
return -1;
}
}
function adjust(error, weights, input)
{
if (error !== 0)
{
for (var i = 0; i < weights.length; i++)
{
weights[i] += lRate * error * input[i];
}
bias += lRate * error;
}
}
function train(inputs, weights, epochs)
{
for (var n = 0; n < epochs; n++)
{
for (var i = 0; i < inputs.length; i++)
{
var set = inputs[i];
var weightedSum = weighted_sum(set, weights);
var result = activate(weightedSum);
var target = set[2];
var error = target - result;
adjust(error, weights, set);
console.log("result: "+ result + " target: " + target + " error: " + error + " weights: " + weights);
}
for (i = inputs.length; i > 0; i--)
{
var set = inputs[i];
var weightedSum = weighted_sum(set, weights);
var result = activate(weightedSum);
var target = set[2];
var error = target - result;
adjust(error, weights, set);
console.log("result: "+ result + " target: " + target + " error: " + error + " weights: " + weights);
}
}
}
train(inputs, weights, epochs);
console.log(weights);
`
Any help is appreciated, with my problem, or just general improvements. Thanks!
I'm very new to OR-Tools and I'm trying to solve a modified VRP with capacity constraints from Google's guide.
In my problem vehicles transport multiple types of items. Some types can be transported together and others cannot.
What I tried
In the following code the types are A and B (they should not be transported together).
First I defined the two callbacks for demands and added the dimensions to the routing model
int demandACallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => {
var fromNode = manager.IndexToNode(fromIndex);
return demandsA[fromNode];
});
int demandBCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => {
var fromNode = manager.IndexToNode(fromIndex);
return demandsB[fromNode];
});
routing.AddDimensionWithVehicleCapacity(demandACallbackIndex, 0,
capacitiesA,
true,
"CapacityA");
routing.AddDimensionWithVehicleCapacity(demandBCallbackIndex, 0,
capacitiesB,
true,
"CapacityB");
Then I retrieved the dimensions and added constraints to routing.solver() for every node
var capacityADimension = routing.GetDimensionOrDie("CapacityA");
var capacityBDimension = routing.GetDimensionOrDie("CapacityB");
for (int i = 0; i < noDeliveries; i++) {
var index = manager.NodeToIndex(i);
routing.solver().Add(capacityADimension.CumulVar(index) * capacityBDimension.CumulVar(index) == 0);
}
When I run the solver (with two vehicles) these constraints seem to be ignored (one vehicle remains parked while the other does all the work even though it shouldn't transport both types of items).
Is this even possible with OR-Tools? If yes, what did I do wrong?
Full code
public SimpleVehicleRoutingSolutionDto SolveVehicleRoutingWithItemConstraints(long[,] distances, long[] capacitiesA, long[] capacitiesB, long[] demandsA, long[] demandsB, int depot)
{
int noVehicles = capacitiesA.Length;
int noDeliveries = deliveriesA.Length;
RoutingIndexManager manager =
new RoutingIndexManager(noDeliveries, noVehicles, depot);
RoutingModel routing = new RoutingModel(manager);
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => {
var fromNode = manager.IndexToNode(fromIndex);
var toNode = manager.IndexToNode(toIndex);
return distances[fromNode, toNode];
});
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
int demandACallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => {
// Convert from routing variable Index to demand NodeIndex.
var fromNode = manager.IndexToNode(fromIndex);
return demandsA[fromNode];
});
int demandBCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => {
// Convert from routing variable Index to demand NodeIndex.
var fromNode = manager.IndexToNode(fromIndex);
return demandsB[fromNode];
});
routing.AddDimensionWithVehicleCapacity(demandACallbackIndex, 0,
capacitiesA,
true,
"CapacityA");
routing.AddDimensionWithVehicleCapacity(demandBCallbackIndex, 0,
capacitiesB,
true,
"CapacityB");
var capacityADimension = routing.GetDimensionOrDie("CapacityA");
var capacityBDimension = routing.GetDimensionOrDie("CapacityB");
for (int i = 0; i < noDeliveries; i++) {
var index = manager.NodeToIndex(i);
routing.solver().Add(capacityADimension.CumulVar(index) * capacityBDimension.CumulVar(index) == 0);
}
RoutingSearchParameters searchParameters =
operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch;
searchParameters.TimeLimit = new Duration { Seconds = 1 };
Assignment solution = routing.SolveWithParameters(searchParameters);
var ret = new SimpleVehicleRoutingSolutionDto();
long totalDistance = 0;
for (int i = 0; i < noVehicles; ++i)
{
var vecihle = new VehiclePathDto { Index = i };
long routeDistance = 0;
var index = routing.Start(i);
while (routing.IsEnd(index) == false)
{
long nodeIndex = manager.IndexToNode(index);
vecihle.Waypoints.Add(new WaypointDto { Index = nodeIndex });
var previousIndex = index;
index = solution.Value(routing.NextVar(index));
routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
}
vecihle.Distance = routeDistance;
ret.Vehicles.Add(vecihle);
totalDistance += routeDistance;
}
ret.TotalDistance = totalDistance;
return ret;
}
And the input:
long[,] dist = {
{ 0, 5, 6 },
{ 5, 0, 3 },
{ 6, 3, 0 }
};
long[] capA = { 5, 5 };
long[] capB = { 5, 5 };
long[] demA = { 0, 1, 0 };
long[] demB = { 0, 0, 1 };
var routingSolution = vehicleRouting.SolveVehicleRoutingWithItemConstraints(dist, capA, capB, demA, demB, 0);
I fixed the problem.
The issue was that the number of nodes was 3 (noDeliveries), however the number of indices was 6, so I only set the constraint on half of them.
Fixed code:
for (int i = 0; i < manager.GetNumberOfIndices(); i++) {
routing.solver().Add(capacityADimension.CumulVar(i) * capacityBDimension.CumulVar(i) == 0);
}
EDIT:
Even better if constraints are set only for the route end node, since the CumulVar value is strictly increasing.
for (int j = 0; j < noVehicles; j++) {
var index = routing.End(j);
routing.solver().Add(capacityADimension.CumulVar(index) * capacityBDimension.CumulVar(index) == 0);
}
Hi I need help finding coordinate or points offset from two endpoints of a line. In my program, I would like to specify the two points and the offset. Then I need to calculate the two offset coordinates.
I worked something out using trigonometry but it only works in some cases and when the line is in the positive quadrant.
Here is an image describing what I need to find:
Points on line
Ok so I need to find X3,Y3 and X4,Y4 coordinates.
My method I followed:
Calculate angle:
Ang = atan((Y2 - Y1)/(X2 - X1))
To find X3:
X3 = X1 + Offset * Cos(Ang)
The same concept for Y3
The issue is that if the line is in a different quadrant the point info is not correct... Any help, please.
This question is a clear case for using 2d vector math. The idea is that we subtract p1 from p2 to give us a vector that describes the length and direction of the line. We then normalize this vector, such that it has a length of 1. If you then multiply this normalized vector with the number of units you'd like to move away from the end and add the result to the end-point, you'll have a new point.
Consider an example walking along the x axis:
p1 = 0,0
p2 = 10,0
dif = p2 - p1 = (10,0)
length is 10, so it's 10 times too long - we divide it by 10 to get a vector 1 unit long.
If we then move 5 times (1,0), we end up at 5,0 - 5 units away, bewdy!
Here's a function that achieves the same thing:
function calcOffsetPoint(x1,y1, x2,y2, distTowardsP2fromP1)
{
var p1 = new vec2d(x1,y1);
var p2 = new vec2d(x2,y2);
var delta = p2.sub(p1);
var dirVec = delta.clone();
dirVec.normalize();
dirVec.timesEquals(distTowardsP2fromP1);
var resultPoint = p1.add(dirVec);
return resultPoint;
}
As you can see, this makes use of something I've called vec2d. There's a copy of it in the following snippet:
"use strict";
function byId(id){return document.getElemetById(id)}
function newEl(tag){return document.createElement(tag)}
window.addEventListener('load', onDocLoaded, false);
function onDocLoaded(evt)
{
var end1 = new vec2d(0,0);
var end2 = new vec2d(10,0);
var midPoint = calcOffsetPoint(end1.x,end1.y, end2.x,end2.y, 5);
console.log( midPoint.toStringN(2) );
}
class vec2d
{
constructor(x=0, y=0)
{
this.mX = x;
this.mY = y;
}
get x(){return this.mX;}
set x(newX){this.mX = newX;}
get y(){return this.mY;}
set y(newY){this.mY = newY;}
add(other)
{
return new vec2d(this.x+other.x, this.y+other.y);
}
sub(other)
{
return new vec2d(this.x-other.x, this.y-other.y);
}
timesEquals(scalar)
{
this.x *= scalar;
this.y *= scalar;
return this;
}
divByEquals(scalar)
{
this.x /= scalar;
this.y /= scalar;
return this;
}
dotProd(other)
{
return this.x*other.x + this.y*other.y;
}
length()
{
return Math.hypot(this.x, this.y);
}
normalize()
{
this.divByEquals( this.length() );
return this;
}
perpendicular()
{
var tmp = this.x;
this.x = -this.y;
this.y = tmp;
return this;
}
clone()
{
return vec2d.clone(this);
}
static clone(other)
{
return new vec2d(other.x, other.y);
}
toString(){return `vec2d {x: ${this.x}, y: ${this.y}}`}
toStringN(n){return `vec2d {x: ${this.x.toFixed(n)}, y: ${this.y.toFixed(n)}}`}
}
function calcOffsetPoint(x1,y1, x2,y2, distTowardsP2fromP1)
{
var p1 = new vec2d(x1,y1);
var p2 = new vec2d(x2,y2);
var delta = p2.sub(p1);
var dirVec = delta.clone();
dirVec.normalize();
dirVec.timesEquals(distTowardsP2fromP1);
var resultPoint = p1.add(dirVec);
return resultPoint;
}
I had some spare time over the weekend, so put together a working demo of the image you posted. Have a play around. Make sure you run it in full-screen, so you can see the sliders that set the offsets for p3 and p4. Disregard the coordinate-system transformation stuff, that's just there to allow me to make an image the same dimensions as your image yet conveniently display it in a window with about 5% the area. The questions come from the exercise section of some old text-book I was reading over the weekend.
"use strict";
class vec2d
{
constructor(x=0,y=0)
{
this.x = x;
this.y = y;
}
abs()
{
this.x = Math.abs(this.x);
this.y = Math.abs(this.y);
return this;
}
add(vec1)
{
return new vec2d(this.x+vec1.x, this.y+vec1.y);
}
sub(vec1)
{
return new vec2d(this.x-vec1.x, this.y-vec1.y);
}
mul(scalar)
{
return new vec2d(this.x*scalar, this.y*scalar);
}
plusEquals(vec1)
{
this.x += vec1.x;
this.y += vec1.y;
return this;
}
minusEquals(vec1)
{
this.x -= vec1.x;
this.y -= vec1.y;
return this;
}
timesEquals(scalar)
{
this.x *= scalar;
this.y *= scalar;
return this;
}
divByEquals(scalar)
{
this.x /= scalar;
this.y /= scalar;
return this;
}
normalize()
{
var len = this.length;
this.x /= len;
this.y /= len;
return this;
}
get length()
{
//return Math.sqrt( (this.x*this.x)+(this.y*this.y) );
return Math.hypot( this.x, this.y );
}
set length(newLen)
{
var invLen = newLen / this.length;
this.timesEquals(invLen);
}
dotProd(vec1)
{
return this.x*vec1.x + this.y*vec1.y;
}
perp()
{
var tmp = this.x;
this.x = -this.y;
this.y = tmp;
return this;
}
wedge(other)
{ // computes an area for parallelograms
return this.x*other.y - this.y*other.x;
}
static clone(other)
{
var result = new vec2d(other.x, other.y);
return result;
}
clone() // clone self
{
return vec2d.clone(this);
}
setTo(other)
{
this.x = other.x;
this.y = other.y;
}
get(){ return {x:this.x, y:this.y}; }
toString(){ return `vec2d {x: ${this.x}, y: ${this.y}}` }
toStringN(n){ return `vec2d {x: ${this.x.toFixed(n)}, y: ${this.y.toFixed(n)}}` }
print(){console.log(this.toString())}
};
class mat3
{
static clone(other)
{
var result = new mat3();
other.elems.forEach(
function(el, index, collection)
{
result.elems[index] = el;
}
);
return result;
}
clone()
{
return mat3.clone(this);
}
constructor(a,b,c,d,e,f)
{
if (arguments.length < 6)
this.setIdentity();
else
this.elems = [a,b,0,c,d,0,e,f,1];
}
setIdentity()
{
this.elems = [1,0,0, 0,1,0, 0,0,1];
}
multiply(other, shouldPrepend)
{
var a, b, c = new mat3();
if (shouldPrepend === true)
{
a = other;
b = this;
}
else
{
a = this;
b = other;
}
c.elems[0] = a.elems[0]*b.elems[0] + a.elems[1]*b.elems[3] + a.elems[2]*b.elems[6];
c.elems[1] = a.elems[0]*b.elems[1] + a.elems[1]*b.elems[4] + a.elems[2]*b.elems[7];
c.elems[2] = a.elems[0]*b.elems[2] + a.elems[1]*b.elems[5] + a.elems[2]*b.elems[8];
// row 1
c.elems[3] = a.elems[3]*b.elems[0] + a.elems[4]*b.elems[3] + a.elems[5]*b.elems[6];
c.elems[4] = a.elems[3]*b.elems[1] + a.elems[4]*b.elems[4] + a.elems[5]*b.elems[7];
c.elems[5] = a.elems[3]*b.elems[2] + a.elems[4]*b.elems[5] + a.elems[5]*b.elems[8];
// row 2
c.elems[6] = a.elems[6]*b.elems[0] + a.elems[7]*b.elems[3] + a.elems[8]*b.elems[6];
c.elems[7] = a.elems[6]*b.elems[1] + a.elems[7]*b.elems[4] + a.elems[8]*b.elems[7];
c.elems[8] = a.elems[6]*b.elems[2] + a.elems[7]*b.elems[5] + a.elems[8]*b.elems[8];
for (var i=0; i<9; i++)
this.elems[i] = c.elems[i];
}
transformVec2s(pointList)
{
var i, n = pointList.length;
for (i=0; i<n; i++)
{
var x = pointList[i].x*this.elems[0] + pointList[i].y*this.elems[3] + this.elems[6];
var y = pointList[i].x*this.elems[1] + pointList[i].y*this.elems[4] + this.elems[7];
pointList[i].x = x;
pointList[i].y = y;
}
}
makeTransformedPoints(pointList)
{
var result = [];
for (var i=0,n=pointList.length;i<n;i++)
{
var x = pointList[i].x*this.elems[0] + pointList[i].y*this.elems[3] + this.elems[6];
var y = pointList[i].x*this.elems[1] + pointList[i].y*this.elems[4] + this.elems[7];
result.push( new vec2d(x,y) );
}
return result;
}
rotate(degrees, shouldPrepend)
{
var tmp = new mat3();
tmp.elems[0] = Math.cos( degrees/180.0 * Math.PI );
tmp.elems[1] = -Math.sin( degrees/180.0 * Math.PI );
tmp.elems[3] = -tmp.elems[1];
tmp.elems[4] = tmp.elems[0];
this.multiply(tmp, shouldPrepend);
}
scaleEach(scaleX, scaleY, shouldPrepend)
{
var tmp = new mat3();
tmp.elems[0] = scaleX;
tmp.elems[4] = scaleY;
this.multiply(tmp, shouldPrepend);
}
scaleBoth(scaleAmount, shouldPrepend)
{
var tmp = new mat3();
tmp.elems[0] = scaleAmount;
tmp.elems[4] = scaleAmount;
this.multiply(tmp, shouldPrepend);
}
translate(transX, transY, shouldPrepend)
{
var tmp = new mat3();
tmp.elems[6] = transX;
tmp.elems[7] = transY;
this.multiply(tmp, shouldPrepend);
}
determinant()
{
var result, a, b;
a = ( (this.elems[0]*this.elems[4]*this.elems[8])
+ (this.elems[1]*this.elems[5]*this.elems[6])
+ (this.elems[2]*this.elems[3]*this.elems[7]) );
b = ( (this.elems[2]*this.elems[4]+this.elems[6])
+ (this.elems[1]*this.elems[3]+this.elems[8])
+ (this.elems[0]*this.elems[5]+this.elems[7]) );
result = a - b;
return result;
}
isInvertible()
{
return (this.determinant() != 0);
}
invert()
{
var det = this.determinant();
if (det == 0)
return;
var a,b,c,d,e,f,g,h,i;
a = this.elems[0]; b = this.elems[1]; c = this.elems[2];
d = this.elems[3]; e = this.elems[4]; f = this.elems[5];
g = this.elems[6]; h = this.elems[7]; i = this.elems[8];
this.elems[0] = (e*i - f*h); this.elems[1] = -((b*i) - (c*h)); this.elems[2] = (b*f)-(c*e);
this.elems[3] = -(d*i - f*g); this.elems[4] = (a*i) - (c*g); this.elems[5] = -( (a*f) - (c*d) );
this.elems[6] = (d*h - e*g); this.elems[7] = -((a*h) - (b*g)); this.elems[8] = (a*e)-(b*d);
var detInv = 1.0 / det;
for (var i=0; i<9; i++)
this.elems[i] *= detInv;
return this;
}
reset()
{
this.setIdentity();
}
print()
{
var str = '';
for (var i=0; i<9; i++)
{
if (i && i%3==0)
str += "\n";
str += " " + this.elems[i].toFixed(5);
}
console.log(str);
}
}
function byId(id){return document.getElementById(id)}
function newEl(tag){return document.createElement(tag)}
window.addEventListener('load', onDocLoaded, false);
function onDocLoaded(evt)
{
byId('output').addEventListener('mousemove', onMouseMove, false);
byId('slider1').addEventListener('input', onSliderInput, false);
byId('slider2').addEventListener('input', onSliderInput, false);
draw();
}
//(400-48)/400 = 0.88
var invMat, svgInvMat;
function onMouseMove(evt)
{
var mousePos = new vec2d(evt.offsetX,evt.offsetY);
var worldPos = mousePos.clone();
invMat.transformVec2s( [worldPos] );
byId('screenMouse').textContent = `screen: ${mousePos.x},${mousePos.y}`;
byId('worldMouse').textContent = `world: ${worldPos.x.toFixed(1)}, ${worldPos.y.toFixed(1)}`;
}
function onSliderInput(evt)
{
draw();
}
function updateSliderLabels()
{
byId('ofset1Output').textContent = byId('slider1').value;
byId('ofset2Output').textContent = byId('slider2').value;
}
function draw()
{
var can = byId('output');
var ctx = can.getContext('2d');
ctx.clearRect(0,0,can.width,can.height);
var orientMat = evaluateViewOrientationMatrix(0.06*can.width,can.height-24, 0,-1);
var scaleMat = computeWindowToViewPortMatrix(2052,1317, can.width,can.height);
var viewMat = scaleMat.clone();
viewMat.multiply(orientMat);
console.log('viewMat');
viewMat.print();
invMat = viewMat.clone().invert();
for (var i=0; i<9; i++)
invMat.elems[i] /= invMat.elems[8];
ctx.strokeStyle = '#fff';
var axisPts = [ new vec2d(0,1070), new vec2d(0,0), new vec2d(0.88*2052,0) ]; // xAxis line 88% of image width
var axis = viewMat.makeTransformedPoints(axisPts);
drawLine(axis[0].x,axis[0].y, axis[1].x,axis[1].y, ctx);
drawLine(axis[1].x,axis[1].y, axis[2].x,axis[2].y, ctx);
var lineEnds = [new vec2d(330,263), new vec2d(1455,809)];
var pts2 = viewMat.makeTransformedPoints(lineEnds);
drawCircle(pts2[0].x,pts2[0].y, 4, ctx);
drawCircle(pts2[1].x,pts2[1].y, 4, ctx);
drawLine(pts2[0].x,pts2[0].y, pts2[1].x,pts2[1].y, ctx);
var rawP3 = calcOffsetCoords(lineEnds[0].x,lineEnds[0].y, lineEnds[1].x,lineEnds[1].y, byId('slider1').value);
var rawP4 = calcOffsetCoords(lineEnds[1].x,lineEnds[1].y, lineEnds[0].x,lineEnds[0].y, byId('slider2').value);
var ofsPts = viewMat.makeTransformedPoints( [rawP3, rawP4] );
drawCircle(ofsPts[0].x,ofsPts[0].y, 4, ctx);
drawCircle(ofsPts[1].x,ofsPts[1].y, 4, ctx);
updateSliderLabels();
}
function calcOffsetCoords(x1,y1, x2,y2, offset)
{
var dx = x2 - x1;
var dy = y2 - y1;
var lineLen = Math.hypot(dx, dy);
var normDx=0, normDy=0;
if (lineLen != 0)
{
normDx = dx / lineLen;
normDy = dy / lineLen;
}
var resultX = x1 + (offset * normDx);
var resultY = y1 + (offset * normDy);
return {x:resultX,y:resultY};//new vec2d(resultX,resultY); //{x:resultX,y:resultY};
}
// Exercise 6-1:
// Write a procedure to implement the evaluateViewOrientationMatrix function that calculates the elements of the
// matrix for transforming world coordinates to viewing coordinates, given the viewing coordinate origin Porigin and
// the viewUp vector
function evalViewOrientMatrix(screenOriginX,screenOriginY, worldUpVectorX,worldUpVectorY)
{
var worldUp = {x: worldUpVectorX, y: worldUpVectorY};
var len = Math.hypot(worldUp.x, worldUp.y);
if (len != 0)
len = 1.0 / len;
worldUp.x *= len;
worldUp.y *= len;
var worldRight = {x: worldUp.y, y: -worldUp.x};
var rotMat = svg.createSVGMatrix();
rotMat.a = worldRight.x;
rotMat.b = worldRight.y;
rotMat.c = worldUp.x;
rotMat.d = worldUp.y;
var transMat = svg.createSVGMatrix();
transMat = transMat.translate(screenOriginX, screenOriginY);
var result = rotMat.multiply(transMat);
return result;
}
function evaluateViewOrientationMatrix(screenOriginX,screenOriginY, worldUpVectorX,worldUpVectorY)
{
var worldUp = new vec2d(worldUpVectorX, worldUpVectorY);
worldUp.normalize();
var worldRight = worldUp.clone().perp();
var rotMat = new mat3();
rotMat.elems[0] = worldRight.x; rotMat.elems[1] = worldRight.y;
rotMat.elems[3] = worldUp.x; rotMat.elems[4] = worldUp.y;
var transMat = new mat3();
transMat.translate(screenOriginX,screenOriginY);
var result = rotMat.clone();
result.multiply(transMat);
return result;
}
/*
0 1 2
3 4 5
6 7 8
translation
-----------
1 0 0
0 1 0
tX tY 1
scaling
---------
sX 0 0
0 sY 0
0 0 1
rotation
--------
cosX -sinX 0
sinX cosX 0
0 0 1
*/
// Exercise 6-2:
// Derive the window to viewport transformation equations 6-3 by first scaling the window to
// the size of the viewport and then translating the scaled window to the viewport position
function computeWindowToViewPortMatrix(windowWidth,windowHeight,viewPortWidth,viewPortHeight)
{
var result = new mat3();
result.scaleEach(viewPortWidth/windowWidth,viewPortHeight/windowHeight);
return result;
}
// returns an SVGMatrix
function compWnd2ViewMat(windowWidth,windowHeight,viewPortWidth,viewPortHeight)
{
var result = svg.createSVGMatrix();
return result.scaleNonUniform(viewPortWidth/windowWidth,viewPortHeight/windowHeight);
}
function drawLine(x1,y1,x2,y2,ctx)
{
ctx.beginPath();
ctx.moveTo(x1,y1);
ctx.lineTo(x2,y2);
ctx.stroke();
}
function drawCircle(x,y,radius,ctx)
{
ctx.beginPath();
ctx.arc(x, y, radius, 0, (Math.PI/180)*360, false);
ctx.stroke();
ctx.closePath();
}
canvas
{
background-color: black;
}
.container
{
display: inline-block;
background-color: #888;
border: solid 4px #555;
}
#screenMouse, #worldMouse, .control
{
display: inline-block;
width: calc(513px/2 - 2*8px);
margin-left: 8px;
}
<body>
<div class='container'>
<canvas id='output' width='513' height='329'></canvas><br>
<div id='screenMouse'></div><div id='worldMouse'></div>
<div>
<div class='control'>P2 ofs: <input id='slider1' type='range' min='0' max='500' value='301'><span id='ofset1Output'></span></div>
<div class='control'>P3 ofs: <input id='slider2' type='range' min='0' max='500' value='285'><span id='ofset2Output'></span></div>
</div>
</div>
</body>