Compound Interest Formula in SwiftUI - iphone

How can I convert this formula intro code in SwiftUI
Thanks in advance

let A = pow(P * (1 + r / n), n * t)
I tried it with these values in a playground
let P = 2.0
let r = 0.2
let n = 2.0
let t = 5.0
let A = pow(P * (1 + r / n), n * t)
and got this value for A:
2655.99227914

Related

Extract intermediate parameter values from an ODE function?

I want to get extract intermediate parameter values from below ODE function. Can someone figure out how to extract those values from the ode solver.
I want to get values of "a, b,s,& w" apart from the main outputs of the ode solver. I tried to modify return option in the function, but that doesn't work.
Be kind to explain by providing sample codes as I am bit new to python.
from scipy.integrate import odeint
import numpy as np
import matplotlib.pyplot as plt
# parameters
S = 0.0001
M = 30.03
K = 113.6561
Vr = 58
R = 8.3145
T = 298.15
Q = 0.000133
Vp = 0.000022
Mr = 36
Pvap = 1400
wf = 0.001
tr = 1200
mass = 40000
# define t
time = 14400
t = np.arange(0, time + 1, 1)
# define initial state
Cv0 = (mass / Vp) * wf # Cv(0)
Cr0 = (mass / Vp) * (1 - wf)
Cair0 = 0 # Cair(0)
# define function and solve ode
def model(x, t):
C = x[0] # C is Cair(t)
c = x[1] # c is Cv(t)
a = Q + (K * S / Vr)
b = (K * S * M) / (Vr * R * T)
s = (K * S * M) / (Vp * R * T)
w = (1 - wf) * 1000
Peq = (c * Pvap) / (c + w * c * M / Mr)
Pair = (C * R * T) / M
dcdt = -s * (Peq - Pair)
if t <= tr:
dCdt = -a * C + b * Peq
else:
dCdt = -a * C
return [dCdt, dcdt]
x = odeint(model, [Cair0, Cv0], t)
C = x[:, 0]
c = x[:, 1]

Generate random Gaussian noise MTLTexture or MTLBuffer of size (width, height)

I am writing a real-time video filter application and for one of the algorithms I want to try out, I need to generate a random, gaussian univariate distributed buffer (or texture) based on the input source.
Coming from a Python background, the following few lines are running in about 0.15s (which is not real-time worthy but a lot faster than the Swift code I tried below):
h = 1170
w = 2532
with Timer():
noise = np.random.normal(size=w * h * 3)
plt.imshow(noise.reshape(w,h,3))
plt.show()
My Swift code try:
private func generateNoiseTextureBuffer(width: Int, height: Int) -> [Float] {
let w = Float(width)
let h = Float(height)
var noiseData = [Float](repeating: 0, count: width * height * 4)
for xi in (0 ..< width) {
for yi in (0 ..< height) {
let index = yi * width + xi
let x = Float(xi)
let y = Float(yi)
let random = GKRandomSource()
let gaussianGenerator = GKGaussianDistribution(randomSource: random, mean: 0.0, deviation: 1.0)
let randX = gaussianGenerator.nextUniform()
let randY = gaussianGenerator.nextUniform()
let scale = sqrt(2.0 * min(w, h) * (2.0 / Float.pi))
let rx = floor(max(min(x + scale * randX, w - 1.0), 0.0))
let ry = floor(max(min(y + scale * randY, h - 1.0), 0.0))
noiseData[index * 4 + 0] = rx + 0.5
noiseData[index * 4 + 1] = ry + 0.5
noiseData[index * 4 + 2] = 1
noiseData[index * 4 + 3] = 1
}
}
return noiseData
}
...
let noiseData = self.generateNoiseTextureBuffer(width: context.sourceColorTexture.width, height: context.sourceColorTexture.height)
let noiseDataSize = noiseData.count * MemoryLayout.size(ofValue: noiseData[0])
self.noiseBuffer = device.makeBuffer(bytes: noiseData, length: noiseDataSize)
How can I accomplish this fast and easily in Swift?

swift map range: unable to type-check this expression in reasonable time

I would like to map a range into an array. The swift compiler 5.2 says it is too complex to type-check. It doesn't look like it should be; it seems pretty simple. I've tried adding explicit types on the constants and the result of the map, but beyond being verbose and ugly, it did not help. Is it possible to force the compiler to type-check this (basically, not give up)? Is swift really not able to type-check this? Why is that and what can I do about it? Code is below. Here is a repl. Thanks for your help.
let p = [0.0, 1.0, 0.0, 0.0, 0.0]
let pExact = 0.8
let pOvershoot = 0.1
let pUndershoot = 0.1
func move(_ p: [Double], _ U: Int) -> [Double] {
let n = p.count
let q: [Double] = (0...n-1).map {i in
p[(i - (U + 1) + n) % n] * pUndershoot
+ p[(i - U + n) % n] * pExact
+ p[(i - (U - 1) + n) % n] * pOvershoot
}
return q
}
print(move(p, 1))
So a little more info, it seems it has to do with the range map. I can pull out the other logic and it compiles and runs fine.
let p = [0.0, 1.0, 0.0, 0.0, 0.0]
let pExact = 0.8
let pOvershoot = 0.1
let pUndershoot = 0.1
let n = p.count
let i = 1
let U = 1
let q = p[(i - (U + 1) + n) % n] * pUndershoot
+ p[(i - U + n) % n] * pExact
+ p[(i - (U - 1) + n) % n] * pOvershoot
print(q)
I have no idea why the compiler has trouble doing type inference here, but typing the closure parameter is enough to fix it for me:
let p = [0.0, 1.0, 0.0, 0.0, 0.0]
let pExact = 0.8
let pOvershoot = 0.1
let pUndershoot = 0.1
func move(_ p: [Double], _ U: Int) -> [Double] {
let n = p.count
let q: [Double] = (0...n-1).map { (i: Int) in
p[(i - (U + 1) + n) % n] * pUndershoot
+ p[(i - U + n) % n] * pExact
+ p[(i - (U - 1) + n) % n] * pOvershoot
}
return q
}
print(move(p, 1))
Swift has trouble with +. I don't recommend this at all, but if you disambiguate by not using it, you can use implicit typing.
infix operator ➕: AdditionPrecedence
extension Double {
static func ➕ (_ double0: Self, _ double1: Self) -> Self {
double0 + double1
}
}
func move(_ p: [Double], _ U: Int) -> [Double] {
let n = p.count
let q = (0...n-1).map { i in
p[(i - (U + 1) + n) % n] * pUndershoot
➕ p[(i - U + n) % n] * pExact
➕ p[(i - (U - 1) + n) % n] * pOvershoot
}
return q
}
Explicit types are the fastest fix, as shown by the other answers. But Accelerate or even just SIMD may be a better match for your problem.
import simd
func move(_ p: [Double], _ U: Int) -> [Double] {
let n = p.count
return (0..<n).map { i in
dot(
SIMD3(
(-1...1).map { p[(i - (U + $0) + n) % n] }
),
[pUndershoot, pExact, pOvershoot]
)
}
}
Ok, once I understood it was the map function that was ambiguous, I added a type specifier to the argument; the lambda takes an Int and returns a Double, (i:Int) -> Double. This compiled and ran correctly;
let p = [0.0, 1.0, 0.0, 0.0, 0.0]
let pExact = 0.8
let pOvershoot = 0.1
let pUndershoot = 0.1
func move(_ p: [Double], _ U: Int) -> [Double] {
let n = p.count
let q: [Double] = (0...(n-1)).map {(i:Int) -> Double in
p[(i - (U + 1) + n) % n] * pUndershoot
+ p[(i - U + n) % n] * pExact
+ p[(i - (U - 1) + n) % n] * pOvershoot
}
return q
}
print(move(p, 1))

how Can I make a Sine Function in swift [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
I have tried the following but it gives me nan
func sin (x: Double) -> Void {
var z = 1000
var n = 1.0
var w = 0.0
var b = (2*n-1)+1
var c = 0.0
while (b > 2){
c *= (b-1)
b -= 1
}
while (z > 0){
w += (power(x:(-1), y:(n-1))*(power(x:x, y:(2*n-1)))/c)
z -= 1
n += 1
}
print(w)
} where
power(x:base, y: exponent)
Example:
func sin(_ x: Double) -> Double {
func factorial(_ number: Int) -> Int {
var result = 1
for i in 2...number {
result *= i
}
return result
}
let x2 = x * x
let x4 = x2 * x2
let t1 = x * (1.0 - x2 / Double(factorial(3)))
let x5 = x4 * x
let t2 = x5 * (1.0 - x2 / (6 * 7)) / Double(factorial(5))
let x9 = x5 * x4
let t3 = x9 * (1.0 - x2 / (10 * 11)) / Double(factorial(9))
let x13 = x9 * x4
let t4 = x13 * (1.0 - x2 / (14 * 15)) / Double(factorial(13))
let result = t1 + t2 + t3 + t4
return round(1000 * result) / 1000
}
Usage:
let test = sin(90 * Double.pi / 180) // 90 degrees
print(test) // 1.0
The bug is obviously the c = 0, which you then multiply with more and more numbers... That's one of the situations where you can say "I don't know what that code does, but it's wrong".
sin x = x - x^3 / 3! + x^5 / 5! - x^7 / 7! etc.
A not completely inefficient approach is to start with the term x, and then figuring out how you get from one term to the next. You don't add up 1000 terms, that's ridiculous. You add up terms until adding the next term doesn't change the sum anymore.
And when you have this working, print sin (0.1), sin (0.2), say to sin (100.) and tell us if you find something unusual.

Bezier and b-spline arc-length algorithm giving me problems

I'm having a bit of a problem calculating the arc-length of my bezier and b-spline curves. I've been banging my head against this for several days, and I think I'm almost there, but can't seem to get it exactly right. I'm developing in Swift, but I think its syntax is clear enough that anyone who knows C/C++ would be able to read it. If not, please let me know and I'll try to translate it into C/C++.
I've checked my implementations against several sources over and over again, and, as far as the algorithms go, they seem to be correct, although I'm not so sure about the B-spline algorithm. Some tutorials use the degree, and some use the order, of the curve in their calculations, and I get really confused. In addition, in using the Gauss-Legendre quadrature, I understand that I'm supposed to sum the integration of the spans, but I'm not sure I'm understanding how to do that correctly. From what I understand, I should be integrating over each knot span. Is that correct?
When I calculate the length of a Bezier curve with the following control polygon, I get 28.2842712474619, while 3D software (Cinema 4D and Maya) tells me the length should be 30.871.
let bezierControlPoints = [
Vector(-10.0, -10.0),
Vector(0.0, -10.0),
Vector(0.0, 10.0),
Vector(10.0, 10.0)
]
The length of the b-spline is similarly off. My algorithm produces 5.6062782185353, while it should be 7.437.
let splineControlPoints = [
Vector(-2.0, -1.0),
Vector(-1.0, 1.0),
Vector(-0.25, 1.0),
Vector(0.25, -1.0),
Vector(1.0, -1.0),
Vector(2.0, 1.0)
]
I'm not a mathematician, so I'm struggling with the math, but I think I have the gist of it.
The Vector class is pretty straight-forwared, but I've overloaded some operators for convenience/legibility which makes the code quite lengthy, so I'm not posting it here. I'm also not including the Gauss-Legendre weights and abscissae. You can download the source and Xcode project from here (53K).
Here's my bezier curve class:
class Bezier
{
var c0:Vector
var c1:Vector
var c2:Vector
var c3:Vector
init(ic0 _ic0:Vector, ic1 _ic1:Vector, ic2 _ic2:Vector, ic3 _ic3:Vector) {
c0 = _ic0
c1 = _ic1
c2 = _ic2
c3 = _ic3
}
// Calculate curve length using Gauss-Legendre quadrature
func curveLength()->Double {
let gl = GaussLegendre()
gl.order = 3 // Good enough for a quadratic polynomial
let xprime = gl.integrate(a:0.0, b:1.0, closure:{ (t:Double)->Double in return self.dx(atTime:t) })
let yprime = gl.integrate(a:0.0, b:1.0, closure:{ (t:Double)->Double in return self.dy(atTime:t) })
return sqrt(xprime*xprime + yprime*yprime)
}
// I could vectorize this, but correctness > efficiency
// The derivative of the x-component
func dx(atTime t:Double)->Double {
let tc = (1.0-t)
let r0 = (3.0 * tc*tc) * (c1.x - c0.x)
let r1 = (6.0 * tc*t) * (c2.x - c1.x)
let r2 = (3.0 * t*t) * (c3.x - c2.x)
return r0 + r1 + r2
}
// The derivative of the y-component
func dy(atTime t:Double)->Double {
let tc = (1.0-t)
let r0 = (3.0 * tc*tc) * (c1.y - c0.y)
let r1 = (6.0 * tc*t) * (c2.y - c1.y)
let r2 = (3.0 * t*t) * (c3.y - c2.y)
return r0 + r1 + r2
}
}
Here is my b-spline class:
class BSpline
{
var spanLengths:[Double]! = nil
var totalLength:Double = 0.0
var cp:[Vector]
var knots:[Double]! = nil
var o:Int = 4
init(controlPoints:[Vector]) {
cp = controlPoints
calcKnots()
}
// Method to return length of the curve using Gauss-Legendre numerical integration
func cacheSpanLengths() {
spanLengths = [Double]()
totalLength = 0.0
let gl = GaussLegendre()
gl.order = o-1 // The derivative should be quadratic, so o-2 would suffice?
// Am I doing this right? Piece-wise integration?
for i in o-1 ..< knots.count-o {
let t0 = knots[i]
let t1 = knots[i+1]
let xprime = gl.integrate(a:t0, b:t1, closure:self.dx)
let yprime = gl.integrate(a:t0, b:t1, closure:self.dy)
let spanLength = sqrt(xprime*xprime + yprime*yprime)
spanLengths.append(spanLength)
totalLength += spanLength
}
}
// The b-spline basis function
func basis(i:Int, _ k:Int, _ x:Double)->Double {
var r:Double = 0.0
switch k {
case 0:
if (knots[i] <= x) && (x <= knots[i+1]) {
r = 1.0
} else {
r = 0.0
}
default:
var n0 = x - knots[i]
var d0 = knots[i+k]-knots[i]
var b0 = basis(i,k-1,x)
var n1 = knots[i+k+1] - x
var d1 = knots[i+k+1]-knots[i+1]
var b1 = basis(i+1,k-1,x)
var left = Double(0.0)
var right = Double(0.0)
if b0 != 0 && d0 != 0 { left = n0 * b0 / d0 }
if b1 != 0 && d1 != 0 { right = n1 * b1 / d1 }
r = left + right
}
return r
}
// Method to calculate and store the knot vector
func calcKnots() {
// The number of knots in the knot vector = number of control points + order (i.e. degree + 1)
let knotCount = cp.count + o
knots = [Double]()
// For an open b-spline where the ends are incident on the first and last control points,
// the first o knots are the same and the last o knots are the same, where o is the order
// of the curve.
var k = 0
for i in 0 ..< o {
knots.append(0.0)
}
for i in o ..< cp.count {
k++
knots.append(Double(k))
}
k++
for i in cp.count ..< knotCount {
knots.append(Double(k))
}
}
// I could vectorize this, but correctness > efficiency
// Derivative of the x-component
func dx(t:Double)->Double {
var p = Double(0.0)
let n = o
for i in 0 ..< cp.count-1 {
let u0 = knots[i + n + 1]
let u1 = knots[i + 1]
let fn = Double(n) / (u0 - u1)
let thePoint = (cp[i+1].x - cp[i].x) * fn
let b = basis(i+1, n-1, Double(t))
p += thePoint * b
}
return Double(p)
}
// Derivative of the y-component
func dy(t:Double)->Double {
var p = Double(0.0)
let n = o
for i in 0 ..< cp.count-1 {
let u0 = knots[i + n + 1]
let u1 = knots[i + 1]
let fn = Double(n) / (u0 - u1)
let thePoint = (cp[i+1].y - cp[i].y) * fn
let b = basis(i+1, n-1, Double(t))
p += thePoint * b
}
return Double(p)
}
}
And here is my Gauss-Legendre implementation:
class GaussLegendre
{
var order:Int = 5
init() {
}
// Numerical integration of arbitrary function
func integrate(a _a:Double, b _b:Double, closure f:(Double)->Double)->Double {
var result = 0.0
let wgts = gl_weights[order-2]
let absc = gl_abscissae[order-2]
for i in 0..<order {
let a0 = absc[i]
let w0 = wgts[i]
result += w0 * f(0.5 * (_b + _a + a0 * (_b - _a)))
}
return 0.5 * (_b - _a) * result
}
}
And my main logic:
let bezierControlPoints = [
Vector(-10.0, -10.0),
Vector(0.0, -10.0),
Vector(0.0, 10.0),
Vector(10.0, 10.0)
]
let splineControlPoints = [
Vector(-2.0, -1.0),
Vector(-1.0, 1.0),
Vector(-0.25, 1.0),
Vector(0.25, -1.0),
Vector(1.0, -1.0),
Vector(2.0, 1.0)
]
var bezier = Bezier(controlPoints:bezierControlPoints)
println("Bezier curve length: \(bezier.curveLength())\n")
var spline:BSpline = BSpline(controlPoints:splineControlPoints)
spline.cacheSpanLengths()
println("B-Spline curve length: \(spline.totalLength)\n")
UPDATE: PROBLEM (PARTIALLY) SOLVED
Thanks to Mike for his answer!
I verified that I am correctly remapping the numerical integration from the interval a..b to -1..1 for the purposes of Legendre-Gauss quadrature. The math is here (apologies to any real mathematicians out there, it's the best I could do with my long-forgotten calculus).
I've increased the order of the Legendre-Gauss quadrature from 5 to 32 as Mike suggested.
Then after a lot of floundering around in Mathematica, I came back and re-read Mike's code and discovered that my code was NOT equivalent to his.
I was taking the square root of the sums of the squared integrals of the derivative components:
when I should have been taking the integral of the magnitudes of the derivative vectors:
In terms of code, in my Bezier class, instead of this:
// INCORRECT
func curveLength()->Double {
let gl = GaussLegendre()
gl.order = 3 // Good enough for a quadratic polynomial
let xprime = gl.integrate(a:0.0, b:1.0, closure:{ (t:Double)->Double in return self.dx(atTime:t) })
let yprime = gl.integrate(a:0.0, b:1.0, closure:{ (t:Double)->Double in return self.dy(atTime:t) })
return sqrt(xprime*xprime + yprime*yprime)
}
I should have written this:
// CORRECT
func curveLength()->Double {
let gl = GaussLegendre()
gl.order = 32
return = gl.integrate(a:0.0, b:1.0, closure:{ (t:Double)->Double in
let x = self.dx(atTime:t)
let y = self.dy(atTime:t)
return sqrt(x*x + y*y)
})
}
My code calculates the arc length as: 3.59835872777095
Mathematica: 3.598358727834686
So, my result is pretty close. Interestingly, there is a discrepancy between a plot in Mathematica of my test Bezier curve, and the same rendered by Cinema 4D, which would explain why the arc lengths calculated by Mathematica and Cinema 4D are different as well. I think I trust Mathematica to be more correct, though.
In my B-Spline class, instead of this:
// INCORRECT
func cacheSpanLengths() {
spanLengths = [Double]()
totalLength = 0.0
let gl = GaussLegendre()
gl.order = o-1 // The derivative should be quadratic, so o-2 would suffice?
// Am I doing this right? Piece-wise integration?
for i in o-1 ..< knots.count-o {
let t0 = knots[i]
let t1 = knots[i+1]
let xprime = gl.integrate(a:t0, b:t1, closure:self.dx)
let yprime = gl.integrate(a:t0, b:t1, closure:self.dy)
let spanLength = sqrt(xprime*xprime + yprime*yprime)
spanLengths.append(spanLength)
totalLength += spanLength
}
}
I should have written this:
// CORRECT
func cacheSpanLengths() {
spanLengths = [Double]()
totalLength = 0.0
let gl = GaussLegendre()
gl.order = 32
// Am I doing this right? Piece-wise integration?
for i in o-1 ..< knots.count-o {
let t0 = knots[i]
let t1 = knots[i+1]
let spanLength = gl.integrate(a:t0, b:t1, closure:{ (t:Double)->Double in
let x = self.dx(atTime:t)
let y = self.dy(atTime:t)
return sqrt(x*x + y*y)
})
spanLengths.append(spanLength)
totalLength += spanLength
}
}
Unfortunately, the B-Spline math is not as straight-forward, and I haven't been able to test it in Mathematica as easily as the Bezier math, so I'm not entirely sure my code is working, even with the above changes. I will post another update when I verify it.
UPDATE 2: PROBLEM SOLVED
Eureka, I discovered an off-by one error in my code to calculate the B-Spline derivative.
Instead of
// Derivative of the x-component
func dx(t:Double)->Double {
var p = Double(0.0)
let n = o // INCORRECT (should be one less)
for i in 0 ..< cp.count-1 {
let u0 = knots[i + n + 1]
let u1 = knots[i + 1]
let fn = Double(n) / (u0 - u1)
let thePoint = (cp[i+1].x - cp[i].x) * fn
let b = basis(i+1, n-1, Double(t))
p += thePoint * b
}
return Double(p)
}
// Derivative of the y-component
func dy(t:Double)->Double {
var p = Double(0.0)
let n = o // INCORRECT (should be one less_
for i in 0 ..< cp.count-1 {
let u0 = knots[i + n + 1]
let u1 = knots[i + 1]
let fn = Double(n) / (u0 - u1)
let thePoint = (cp[i+1].y - cp[i].y) * fn
let b = basis(i+1, n-1, Double(t))
p += thePoint * b
}
return Double(p)
}
I should have written
// Derivative of the x-component
func dx(t:Double)->Double {
var p = Double(0.0)
let n = o-1 // CORRECT
for i in 0 ..< cp.count-1 {
let u0 = knots[i + n + 1]
let u1 = knots[i + 1]
let fn = Double(n) / (u0 - u1)
let thePoint = (cp[i+1].x - cp[i].x) * fn
let b = basis(i+1, n-1, Double(t))
p += thePoint * b
}
return Double(p)
}
// Derivative of the y-component
func dy(t:Double)->Double {
var p = Double(0.0)
let n = o-1 // CORRECT
for i in 0 ..< cp.count-1 {
let u0 = knots[i + n + 1]
let u1 = knots[i + 1]
let fn = Double(n) / (u0 - u1)
let thePoint = (cp[i+1].y - cp[i].y) * fn
let b = basis(i+1, n-1, Double(t))
p += thePoint * b
}
return Double(p)
}
My code now calculates the length of the B-Spline curve as 6.87309971722132.
Mathematica: 6.87309884638438.
It's probably not scientifically precise, but good enough for me.
The Legendre-Gauss procedure is specifically defined for the interval [-1,1], whereas Beziers and B-Splines are defined over [0,1], so that's a simple conversion and at least while you're trying to make sure your code does the right thing, easy to bake in instead of supplying a dynamic interval (as you say, accuracy over efficiency. Once it works, we can worry about optimising)
So, given weights W and abscissae A (both of same length n), you'd do:
z = 0.5
for i in 1..n
w = W[i]
a = A[i]
t = z * a + z
sum += w * arcfn(t, xpoints, ypoints)
return z * sum
with the pseudo-code assuming list indexing from 1. The arcfn would be defined as:
arcfn(t, xpoints, ypoints):
x = derive(xpoints, t)
y = derive(ypoints, t)
c = x*x + y*y
return sqrt(c)
But that part looks right already.
Your derivatives look correct too, so the main question is: "are you using enough slices in your Legendre-Gauss quadrature?". Your code suggests you're using only 5 slices, which isn't nearly enough to get a good result. Using http://pomax.github.io/bezierinfo/legendre-gauss.html as term data, you generally want a set for n of 16 or higher (for cubic Bezier curves, 24 is generally safe, although still underperformant for curves with cusps or lots of inflections).
I can recommend taking the "unit test" approach here: test your bezier and bspline code (separately) for known base and derivative values. Do those check out? One problem ruled out. On to your LG code: if you perform Legendre-Gauss on a parametric function for a straight line using:
fx(t) = t
fy(t) = t
fx'(t) = 1
fy'(t) = 1
over interval t=[0,1], we know the length should be exactly the square root of 2, and the derivatives are the simplest possible. If those work, do a non-linear test using:
fx(t) = sin(t)
fy(t) = cos(t)
fx'(t) = cos(t)
fy'(t) = -sin(t)
over interval t=[0,1]; we know the length should be exactly 1. Does your LG implementation yield the correct value? Another problem ruled out. If it doesn't, check your weights and abscissae. Do they match the ones from the linked page (generated with a verifiably correct Mathematica program, so pretty much guaranteed to be correct)? Are you using enough slices? Bump the number up to 10, 16, 24, 32; increasing the number of slices will show a stabilising summation, where adding more slices doesn't change digits before the 2nd, 3rd, 4th, 5th, etc decimal point as you increase the count.
Are the curves you're testing with known to be problematic curves? Plot them, do they have cusps or lots of inflections? That's going to be a problem for LG, try simpler curves to see if the values you get back for those, at least, are correct.
Finally, check your types: Are you using the highest precision possible datatype? 32 bit floats are going to run into mysteriously disappearing FPU and wonderful rounding errors at the values we need to use when doing LG with a reasonable number of slices.