Calling two functions within another function in Gatling is not working - scala

I am trying to execute multiple HTTP calls within one function
Main:
def requestChain: ChainBuilder = {
feed(feeder(dataSource))
.exec(cleanTransactions("Revoke Transaction"))
}
Now within this method, I am calling 2 other methods which do different http calls. the first call saves the result (Array)in a getLicensesForDevice_TA session variable. When iterating through variable, I am trying to Make another http call based on the elements in the Array. However, it seems that the second call (revokeLicense) for some reason is not executed (The problem does not have to do with the If statement, I already checked that). When calling revokeLicense direkt in the requestChain, it is executed correctly.
private def cleanTransactions(methodeName:String, device:String, returnCode:Integer ): ChainBuilder = {
exec(getLicensesForDevice(methodeName, device, 200))
.foreach("${getLicensesForDevice_TA}", "deleteLicensesForDevice_TA") {
exec(session => {
val gatlingTransactionID = session("deleteLicensesForDevice_TA").as[String].trim
session.set("gatlingTransactionID", gatlingTransactionID)
})
if ("${gatlingTransactionID}".contains("TestTA")){
exec(revokeLicense(methodeName,"${gatlingTransactionID}",204,false))
}else{
exec(session => {
println("No TA will be executed: ${gatlingTransactionID}" )
session
})
}
}
}

That can't work. As explained in Gatling's documentation, you can't use Gatling DSL inside Scala functions. Gatling DSL methods are just builders that build components once at boot time.
Gatling DSL components are immutable ActionBuilder(s) that have to be chained altogether and are only built once on startup. The results is a workflow chain of Action(s). These builders don’t do anything by themselves, they don’t trigger any side effect, they are just definitions. As a result, creating such DSL components at runtime in functions is completely meaningless. If you want conditional paths in your execution flow, use the proper DSL components (doIf, randomSwitch, etc)

Related

Create a Scala DSL where state is available within a block without being declared as a parameter?

I have some vanilla Scala code that looks like this:
addCooker(new Cooker(getOvenState(), cookingTime, CookieNames.GingerSnaps) {
override def cook(customer: Customer, priority: Priority): Boolean = {
// Use `customer` and `priority` to cook a cookie and return true if successful.
???
}
})
I.e. I create a callback-like Cooker object that's passed to an addCooker method. CookieCutter takes some values (cookingTime etc.) that are available when calling addCooker (these are passed to its ctor) and it takes some values (customer etc.) that will only be available at some later point in time (these will be passed as arguments to its cook method).
I'd like to create a DSL where I can write this as:
addCooker(getOvenState(), cookingTime, CookieNames.GingerSnaps) {
// Somehow make a `customer` and `priority` value (that are not available at
// the time `addCooker` happens) visible to the code within this block.
}
I could declare addCooker as a method like so:
def addCooker(overState: OvenState, cookingTime: Duration, name: CookieName)(
block: () => Boolean
): Unit = ???
But I don't see a way to make cookingTime etc. available such that they can be used within the lambda passed as block.
The best I can do results in something like this:
addCooker(getOvenState(), cookingTime, CookieNames.GingerSnaps) { (customer, priority) =>
true
}
Normally, this would be good enough for me but in this situation, hundreds of such blocks will be written (and there'll be lots of different but similar constructs) and a DSL where many of the values are just there rather than one needing to always declare them as parameters would be ideal.
I guess one way is to make customer etc. protected var variables of the class where the addCooker calls are being made, i.e. they'd be visible not just to my { ... } block but also to the logic that calls addCooker (but without yet being set to anything meaningful).
PS are there any good guides to the kinds of non-obvious tricks that you need to use to create DSLs? I found lots of guides that didn't go very deep (focusing on little more than using implicits to do type conversions or do fun things with operators). The only substantial thing I found was DSLs in Action but it was written in 2010 and uses Scala 2.8 - I imagine the thinking on many things related to implicits and the like has changed noticeably since then.
If the above snippets are unclear, you can them (with supporting stubs such that things will compile) here:
https://gist.github.com/george-hawkins/a9db64f05e14ea7d191bc4cf85dd64f6

What does the #suspendable annotation in Scala do?

While reading the Scala.React implementation on GitHub I've stumbled across the #suspendable annotation:
object Reactor {
def loop[A](op: FlowOps => Unit #suspendable): Reactor = new Reactor {
def body = while (!isDisposed) op(this)
}
}
In the paper Deprecating the Observer Pattern with Scala.React, the Reactor object is used in the following way:
Reactor.loop { self =>
// step 1
val path = new Path((self await mouseDown).position)
self.loopUntil(mouseUp) { // step 2
path.lineTo(m.position)
draw(path)
}
path.close() // step 3
draw(path)
}
Notably, the code in the Reactor body can wait for Events, like mouseDown. Therefore it looks like the code is executed asynchronously, even though there is no explicit use of threads. Because I couldn't find what the #suspandable annotation does, I feel like I'd need to understand it, before I can understand the rest of the implementation. Therefore:
What does the #suspendable annotation do?
Are there scenarios, where it is required?
When would I use it?
My suspicion is, that it somehow abstracts over, and allows for asynchronous execution. If that is true:
How does it work "under the hood" / how is it implemented?
#suspendable is an annotation introduced by the now-abandoned Scala Continuations library (which for a while was part of the Scala standard library) and used by the associated compiler plugin.
The project explored adding delimited continuations to Scala, and about the best extant documentation for it is in the doc-comments here. #suspendable is an alias for #cps[Unit], which basically signals the compiler plugin to perform a CPS transform at shifts when it's called within a reset block.
A rough idea of what the plugin does is:
def five(): Int #cps[Int] = shift { k: (Int => Int) => k(5) }
reset { five() + 1 }
ultimately gets translated to something as simple as
val kont: Int => Int = _ + 1
five(kont)
The basic idea is to translate the remainder of the expression into a function which takes the result up to that point as an argument and pass it into a function which will calculate the result up to that point and call the function representing the remainder of the expression. This is basically what you do manually when using a callback-based API (e.g. in Node.js).
The Future APIs (as well as the async/await compiler plugins for working with Futures) simplified and the use of CPS for asynchronous programming (which is, outside of writing compilers, the only wide non-academic use of CPS) as well as adding more intuitive support for concurrency and asynchrony, which led to the deprecation and removal of continuation support.
This is part of the deprecated scala-continuations library.
You can find documentation for it at this URL:
https://www.scala-lang.org/files/archive/api/2.11.12/scala-continuations-library/#scala.util.continuations.package

Understanding the continuation theorem in Scala

So, I was trying to learn about Continuation. I came across with the following saying (link):
Say you're in the kitchen in front of the refrigerator, thinking about a sandwich. You take a continuation right there and stick it in your pocket. Then you get some turkey and bread out of the refrigerator and make yourself a sandwich, which is now sitting on the counter. You invoke the continuation in your pocket, and you find yourself standing in front of the refrigerator again, thinking about a sandwich. But fortunately, there's a sandwich on the counter, and all the materials used to make it are gone. So you eat it. :-) — Luke Palmer
Also, I saw a program in Scala:
var k1 : (Unit => Sandwich) = null
reset {
shift { k : Unit => Sandwich) => k1 = k }
makeSandwich
}
val x = k1()
I don't really know the syntax of Scala (looks similar to Java and C mixed together) but I would like to understand the concept of Continuation.
Firstly, I tried to run this program (by adding it into main). But it fails, I think that it has a syntax error due to the ) near Sandwich but I'm not sure. I removed it but it still does not compile.
How to create a fully compiled example that shows the concept of the story above?
How this example shows the concept of Continuation.
In the link above there was the following saying: "Not a perfect analogy in Scala because makeSandwich is not executed the first time through (unlike in Scheme)". What does it mean?
Since you seem to be more interested in the concept of the "continuation" rather than specific code, let's forget about that code for a moment (especially because it is quite old and I don't really like those examples because IMHO you can't understand them correctly unless you already know what a continuation is).
Note: this is a very long answer with some attempts to describe what a continuations is and why it is useful. There are some examples in Scala-like pseudo-code none of which can actually be compiled and run (there is just one compilable example at the very end and it references another example from the middle of the answer). Expect to spend a significant amount of time just reading this answer.
Intro to continuations
Probably the first thing you should do to understand a continuation is to forget about how modern compilers for most of the imperative languages work and how most of the modern CPUs work and particularly the idea of the call stack. This is actually implementation details (although quite popular and quite useful in practice).
Assume you have a CPU that can execute some sequence of instructions. Now you want to have a high level languages that support the idea of methods that can call each other. The obvious problem you face is that the CPU needs some "forward only" sequence of commands but you want some way to "return" results from a sub-program to the caller. Conceptually it means that you need to have some way to store somewhere before the call all the state of the caller method that is required for it to continue to run after the result of the sub-program is computed, pass it to the sub-program and then ask the sub-program at the end to continue execution from that stored state. This stored state is exactly a continuation. In most of the modern environments those continuations are stored on the call stack and often there are some assembly instructions specifically designed to help handling it (like call and return). But again this is just implementation details. Potentially they might be stored in an arbitrary way and it will still work.
So now let's re-iterate this idea: a continuation is a state of the program at some point that is enough to continue its execution from that point, typically with no additional input or some small known input (like a return value of the called method). Running a continuation is different from a method call in that usually continuation never explicitly returns execution control back to the caller, it can only pass it to another continuation. Potentially you can create such a state yourself, but in practice for the feature to be useful you need some support from the compiler to build continuations automatically or emulate it in some other way (this is why the Scala code you see requires a compiler plugin).
Asynchronous calls
Now there is an obvious question: why continuations are useful at all? Actually there are a few more scenarios besides the simple "return" case. One such scenario is asynchronous programming. Actually if you do some asynchronous call and provide a callback to handle the result, this can be seen as passing a continuation. Unfortunately most of the modern languages do not support automatic continuations so you have to grab all the relevant state yourself. Another problem appears if you have some logic that needs a sequence of many async calls. And if some of the calls are conditional, you easily get to the callbacks hell. The way continuations help you avoid it is by allowing you build a method with effectively inverted control flow. With typical call it is the caller that knows the callee and expects to get a result back in a synchronous way. With continuations you can write a method with several "entry points" (or "return to points") for different stages of the processing logic that you can just pass to some other method and that method can still return to exactly that position.
Consider following example (in pseudo-code that is Scala-like but is actually far from the real Scala in many details):
def someBusinessLogic() = {
val userInput = getIntFromUser()
val firstServiceRes = requestService1(userInput)
val secondServiceRes = if (firstServiceRes % 2 == 0) requestService2v1(userInput) else requestService2v2(userInput)
showToUser(combineUserInputAndResults(userInput,secondServiceRes))
}
If all those calls a synchronous blocking calls, this code is easy. But assume all those get and request calls are asynchronous. How to re-write the code? The moment you put the logic in callbacks you loose the clarity of the sequential code. And here is where continuations might help you:
def someBusinessLogicCont() = {
// the method entry point
val userInput
getIntFromUserAsync(cont1, captureContinuationExpecting(entry1, userInput))
// entry/return point after user input
entry1:
val firstServiceRes
requestService1Async(userInput, captureContinuationExpecting(entry2, firstServiceRes))
// entry/return point after the first request to the service
entry2:
val secondServiceRes
if (firstServiceRes % 2 == 0) {
requestService2v1Async(userInput, captureContinuationExpecting(entry3, secondServiceRes))
// entry/return point after the second request to the service v1
entry3:
} else {
requestService2v2Async(userInput, captureContinuationExpecting(entry4, secondServiceRes))
// entry/return point after the second request to the service v2
entry4:
}
showToUser(combineUserInputAndResults(userInput, secondServiceRes))
}
It is hard to capture the idea in a pseudo-code. What I mean is that all those Async method never return. The only way to continue execution of the someBusinessLogicCont is to call the continuation passed into the "async" method. The captureContinuationExpecting(label, variable) call is supposed to create a continuation of the current method at the label with the input (return) value bound to the variable. With such a re-write you still has a sequential-looking business logic even with all those asynchronous calls. So now for a getIntFromUserAsync the second argument looks like just another asynchronous (i.e. never-returning) method that just requires one integer argument. Let's call this type Continuation[T]
trait Continuation[T] {
def continue(value: T):Nothing
}
Logically Continuation[T] looks like a function T => Unit or rather T => Nothing where Nothing as the return type signifies that the call actually never returns (note, in actual Scala implementation such calls do return, so no Nothing there, but I think conceptually it is easy to think about no-return continuations).
Internal vs external iteration
Another example is a problem of iteration. Iteration can be internal or external. Internal iteration API looks like this:
trait CollectionI[T] {
def forEachInternal(handler: T => Unit): Unit
}
External iteration looks like this:
trait Iterator[T] {
def nextValue(): Option[T]
}
trait CollectionE[T] {
def forEachExternal(): Iterator[T]
}
Note: often Iterator has two method like hasNext and nextValue returning T but it will just make the story a bit more complicated. Here I use a merged nextValue returning Option[T] where the value None means the end of the iteration and Some(value) means the next value.
Assuming the Collection is implemented by something more complicated than an array or a simple list, for example some kind of a tree, there is a conflict here between the implementer of the API and the API user if you use typical imperative language. And the conflict is over the simple question: who controls the stack (i.e. the easy to use state of the program)? The internal iteration is easier for the implementer because he controls the stack and can easily store whatever state is needed to move to the next item but for the API user the things become tricky if she wants to do some aggregation of the stored data because now she has to save the state between the calls to the handler somewhere. Also you need some additional tricks to let the user stop the iteration at some arbitrary place before the end of the data (consider you are trying to implement find via forEach). Conversely the external iteration is easy for the user: she can store all the state necessary to process data in any way in local variables but the API implementer now has to store his state between calls to the nextValue somewhere else. So fundamentally the problem arises because there is only one place to easily store the state of "your" part of the program (the call stack) and two conflicting users for that place. It would be nice if you could just have two different independent places for the state: one for the implementer and another for the user. And continuations provide exactly that. The idea is that we can pass execution control between two methods back and forth using two continuations (one for each part of the program). Let's change the signatures to:
// internal iteration
// continuation of the iterator
type ContIterI[T] = Continuation[(ContCallerI[T], ContCallerLastI)]
// continuation of the caller
type ContCallerI[T] = Continuation[(T, ContIterI[T])]
// last continuation of the caller
type ContCallerLastI = Continuation[Unit]
// external iteration
// continuation of the iterator
type ContIterE[T] = Continuation[ContCallerE[T]]
// continuation of the caller
type ContCallerE[T] = Continuation[(Option[T], ContIterE[T])]
trait Iterator[T] {
def nextValue(cont : ContCallerE[T]): Nothing
}
trait CollectionE[T] {
def forEachExternal(): Iterator[T]
}
trait CollectionI[T] {
def forEachInternal(cont : ContCallerI[T]): Nothing
}
Here ContCallerI[T] type, for example, means that this is a continuation (i.e. a state of the program) the expects two input parameters to continue running: one of type T (the next element) and another of type ContIterI[T] (the continuation to switch back). Now you can see that the new forEachInternal and the new forEachExternal+Iterator have almost the same signatures. The only difference in how the end of the iteration is signaled: in one case it is done by returning None and in other by passing and calling another continuation (ContCallerLastI).
Here is a naive pseudo-code implementation of a sum of elements in an array of Int using these signatures (an array is used instead of something more complicated to simplify the example):
class ArrayCollection[T](val data:T[]) : CollectionI[T] {
def forEachInternal(cont0 : ContCallerI[T], lastCont: ContCallerLastI): Nothing = {
var contCaller = cont0
for(i <- 0 to data.length) {
val contIter = captureContinuationExpecting(label, contCaller)
contCaller.continue(data(i), contIter)
label:
}
}
}
def sum(arr: ArrayCollection[Int]): Int = {
var sum = 0
val elem:Int
val iterCont:ContIterI[Int]
val contAdd0 = captureContinuationExpecting(labelAdd, elem, iterCont)
val contLast = captureContinuation(labelReturn)
arr.forEachInternal(contAdd0, contLast)
labelAdd:
sum += elem
val contAdd = captureContinuationExpecting(labelAdd, elem, iterCont)
iterCont.continue(contAdd)
// note that the code never execute this line, the only way to jump out of labelAdd is to call contLast
labelReturn:
return sum
}
Note how both implementations of the forEachInternal and of the sum methods look fairly sequential.
Multi-tasking
Cooperative multitasking also known as coroutines is actually very similar to the iterations example. Cooperative multitasking is an idea that the program can voluntarily give up ("yield") its execution control either to the global scheduler or to another known coroutine. Actually the last (re-written) example of sum can be seen as two coroutines working together: one doing iteration and another doing summation. But more generally your code might yield its execution to some scheduler that then will select which other coroutine to run next. And what the scheduler does is manages a bunch of continuations deciding which to continue next.
Preemptive multitasking can be seen as a similar thing but the scheduler is run by some hardware interruption and then the scheduler needs a way to create a continuation of the program being executed just before the interruption from the outside of that program rather than from the inside.
Scala examples
What you see is a really old article that is referring to Scala 2.8 (while current versions are 2.11, 2.12, and soon 2.13). As #igorpcholkin correctly pointed out, you need to use a Scala continuations compiler plugin and library. The sbt compiler plugin page has an example how to enable exactly that plugin (for Scala 2.12 and #igorpcholkin's answer has the magic strings for Scala 2.11):
val continuationsVersion = "1.0.3"
autoCompilerPlugins := true
addCompilerPlugin("org.scala-lang.plugins" % "scala-continuations-plugin_2.12.2" % continuationsVersion)
libraryDependencies += "org.scala-lang.plugins" %% "scala-continuations-library" % continuationsVersion
scalacOptions += "-P:continuations:enable"
The problem is that plugin is semi-abandoned and is not widely used in practice. Also the syntax has changed since the Scala 2.8 times so it is hard to get those examples running even if you fix the obvious syntax bugs like missing ( here and there. The reason of that state is stated on the GitHub as:
You may also be interested in https://github.com/scala/async, which covers the most common use case for the continuations plugin.
What that plugin does is emulates continuations using code-rewriting (I suppose it is really hard to implement true continuations over the JVM execution model). And under such re-writings a natural thing to represent a continuation is some function (typically called k and k1 in those examples).
So now if you managed to read the wall of text above, you can probably interpret the sandwich example correctly. AFAIU that example is an example of using continuation as means to emulate "return". If we re-sate it with more details, it could go like this:
You (your brain) are inside some function that at some points decides that it wants a sandwich. Luckily you have a sub-routine that knows how to make a sandwich. You store your current brain state as a continuation into the pocket and call the sub-routine saying to it that when the job is done, it should continue the continuation from the pocket. Then you make a sandwich according to that sub-routine messing up with your previous brain state. At the end of the sub-routine it runs the continuation from the pocket and you return to the state just before the call of the sub-routine, forget all your state during that sub-routine (i.e. how you made the sandwich) but you can see the changes in the outside world i.e. that the sandwich is made now.
To provide at least one compilable example with the current version of the scala-continuations, here is a simplified version of my asynchronous example:
case class RemoteService(private val readData: Array[Int]) {
private var readPos = -1
def asyncRead(callback: Int => Unit): Unit = {
readPos += 1
callback(readData(readPos))
}
}
def readAsyncUsage(rs1: RemoteService, rs2: RemoteService): Unit = {
import scala.util.continuations._
reset {
val read1 = shift(rs1.asyncRead)
val read2 = if (read1 % 2 == 0) shift(rs1.asyncRead) else shift(rs2.asyncRead)
println(s"read1 = $read1, read2 = $read2")
}
}
def readExample(): Unit = {
// this prints 1-42
readAsyncUsage(RemoteService(Array(1, 2)), RemoteService(Array(42)))
// this prints 2-1
readAsyncUsage(RemoteService(Array(2, 1)), RemoteService(Array(42)))
}
Here remote calls are emulated (mocked) with a fixed data provided in arrays. Note how readAsyncUsage looks like a totally sequential code despite the non-trivial logic of which remote service to call in the second read depending on the result of the first read.
For full example you need prepare Scala compiler to use continuations and also use a special compiler plugin and library.
The simplest way is a create a new sbt.project in IntellijIDEA with the following files: build.sbt - in the root of the project, CTest.scala - inside main/src.
Here is contents of both files:
build.sbt:
name := "ContinuationSandwich"
version := "0.1"
scalaVersion := "2.11.6"
autoCompilerPlugins := true
addCompilerPlugin(
"org.scala-lang.plugins" % "scala-continuations-plugin_2.11.6" % "1.0.2")
libraryDependencies +=
"org.scala-lang.plugins" %% "scala-continuations-library" % "1.0.2"
scalacOptions += "-P:continuations:enable"
CTest.scala:
import scala.util.continuations._
object CTest extends App {
case class Sandwich()
def makeSandwich = {
println("Making sandwich")
new Sandwich
}
var k1 : (Unit => Sandwich) = null
reset {
shift { k : (Unit => Sandwich) => k1 = k }
makeSandwich
}
val x = k1()
}
What the code above essentially does is calling makeSandwich function (in a convoluted manner). So execution result would be just printing "Making sandwich" into console. The same result would be achieved without continuations:
object CTest extends App {
case class Sandwich()
def makeSandwich = {
println("Making sandwich")
new Sandwich
}
val x = makeSandwich
}
So what's the point? My understanding is that we want to "prepare a sandwich", ignoring the fact that we may be not ready for that. We mark a point of time where we want to return to after all necessary conditions are met (i.e. we have all necessary ingredients ready). After we fetch all ingredients we can return to the mark and "prepare a sandwich", "forgetting that we were unable to do that in past". Continuations allow us to "mark point of time in past" and return to that point.
Now step by step. k1 is a variable to hold a pointer to a function which should allow to "create sandwich". We know it because k1 is declared so: (Unit => Sandwich).
However initially the variable is not initialized (k1 = null, "there are no ingredients to make a sandwich yet"). So we can't call the function preparing sandwich using that variable yet.
So we mark a point of execution where we want to return to (or point of time in past we want to return to) using "reset" statement.
makeSandwich is another pointer to a function which actually allows to make a sandwich. It's the last statement of "reset block" and hence it is passed to "shift" (function) as argument (shift { k : (Unit => Sandwich).... Inside shift we assign that argument to k1 variable k1 = k thus making k1 ready to be called as a function. After that we return to execution point marked by reset. The next statement is execution of function pointed to by k1 variable which is now properly initialized so finally we call makeSandwich which prints "Making sandwich" to a console. It also returns an instance of sandwich class which is assigned to x variable.
Not sure, probably it means that makeSandwich is not called inside reset block but just afterwards when we call it as k1().

How to write unit test when you use Future?

I've wrote a class with some functions that does HTTP calls and returns a Future[String]. I use those functions inside a method that I need to write some tests:
def score(rawEvent: Json) = {
httpService
.get("name", formatJsonAttribute(rawEvent.name))
.onComplete { op =>
op.map { json =>
//What must be tested
}
}
}
The function onComplete doesn't have a return type - it returns Unit. How can I replace that onComplete to make my function return something to be tested?
I completely agree with #Michal, that you should always prefer map to onComplete with Futures. However I'd like to point out that, as you said yourself, what you wish to test is not the HTTP call itself (which relies on an HTTP client you probably don't need to test, a response from a server on which you may have no control, ...), but what you do with its answer.
So why not write a test, not on the function score, but on the function you wrote in your onComplete (or map, if you decided to change it)?
That way you will be able to test it with precise values for json, that you may wish to define as the result you will get from the server, but that you can control completely (for instance, you could test border cases without forcing your server to give unusual responses).
Testing that the two (HTTP call and callback function) sit well together is not a unit-test question, but an integration-test question, and should be done only once you know that your function does what is expected of it.
At that time, you will effectively need to check the value of a Future, in which case, you can use Await.result as #Michal suggested, or use the relevant constructs that your test framework gives. For instance, scalatest has an AsyncTestSuite trait for this kind of issue.
Use map instead of onComplete. It will also provide you with resolved value inside mapping function. The return type of score function will be Future[T] where T will be the result type of your processing.
In the tests you can use scala.concurrent.Await.result() function.

What effect does using Action.async have, since Play uses Netty which is non-blocking

Since Netty is a non-blocking server, what effect does changing an action to using .async?
def index = Action { ... }
versus
def index = Action.async { ... }
I understand that with .async you will get a Future[SimpleResult]. But since Netty is non-blocking, will Play do something similar under the covers anyway?
What effect will this have on throughput/scalability? Is this a hard question to answer where it depends on other factors?
The reason I am asking is, I have my own custom Action and I wanted to reset the cookie timeout for every page request so I am doing this which is a async call:
object MyAction extends ActionBuilder[abc123] {
def invokeBlock[A](request: Request[A], block: (abc123[A]) => Future[SimpleResult]) = {
...
val result: Future[SimpleResult] = block(new abc123(..., result))
result.map(_.withCookies(...))
}
}
The take away from the above snippet is I am using a Future[SimpleResult], is this similar to calling Action.async but this is inside of my Action itself?
I want to understand what effect this will have on my application design. It seems like just for the ability to set my cookie on a per request basis I have changed from blocking to non-blocking. But I am confused since Netty is non-blocking, maybe I haven't really changed anything in reality as it was already async?
Or have I simply created another async call embedded in another one?
Hoping someone can clarify this with some details and how or what effect this will have in performance/throughput.
def index = Action { ... } is non-blocking you are right.
The purpose of Action.async is simply to make it easier to work with Futures in your actions.
For example:
def index = Action.async {
val allOptionsFuture: Future[List[UserOption]] = optionService.findAll()
allOptionFuture map {
options =>
Ok(views.html.main(options))
}
}
Here my service returns a Future, and to avoid dealing with extracting the result I just map it to a Future[SimpleResult] and Action.async takes care of the rest.
If my service was returning List[UserOption] directly I could just use Action.apply, but under the hood it would still be non-blocking.
If you look at Action source code, you can even see that apply eventually calls async:
https://github.com/playframework/playframework/blob/2.3.x/framework/src/play/src/main/scala/play/api/mvc/Action.scala#L432
I happened to come across this question, I like the answer from #vptheron, and I also want to share something I read from book "Reactive Web Applications", which, I think, is also great.
The Action.async builder expects to be given a function of type Request => Future[Result]. Actions declared in this fashion are not much different from plain Action { request => ... } calls, the only difference is that Play knows that Action.async actions are already asynchronous, so it doesn’t wrap their contents in a future block.
That’s right — Play will by default schedule any Action body to be executed asynchronously against its default web worker pool by wrapping the execution in a future. The only difference between Action and Action.async is that in the second case, we’re taking care of providing an asynchronous computation.
It also presented one sample:
def listFiles = Action { implicit request =>
val files = new java.io.File(".").listFiles
Ok(files.map(_.getName).mkString(", "))
}
which is problematic, given its use of the blocking java.io.File API.
Here the java.io.File API is performing a blocking I/O operation, which means that one of the few threads of Play's web worker pool will be hijacked while the OS figures out the list of files in the execution directory. This is the kind of situation you should avoid at all costs, because it means that the worker pool may run out of threads.
-
The reactive audit tool, available at https://github.com/octo-online/reactive-audit, aims to point out blocking calls in a project.
Hope it helps, too.