I have collection like this:
collection name is - account.
and it has sub-documents like account > buildings > gateways > devices.
{
"_id" : ObjectId("5e1fe45cd05bfb0cc549297d"),
"apiCallCount" : 0,
"email" : "info#data.com",
"password" : "dummy",
"userName" : "AAAAA",
"companyName" : "The AAAAAA",
"apiKey" : "5e1fe45cd05bfb0cc549297c",
"solutionType" : "VVVVVV",
"parentCompany" : "",
"buildings" : [
{
"_id" : ObjectId("5e1fe5e3d05bfb0cc5494146"),
"buildingName" : "xxxxxx",
"address" : "xxx",
"suite" : "101",
"floor" : "22",
"timeZone" : "us/eastern",
"gateways" : [
{
"_id" : ObjectId("5e1fe624d05bfb0cc549453a"),
"gatewayName" : "CC-GW-THF-001",
"gatewayKey" : "gk_5e1fe624d05bfb0cc549453a",
"suite" : "area1",
"devices" : [
{
"_id" : ObjectId("5e1fe751d05bfb0cc549578d"),
"serialNumber" : "129300000013",
"area" : "area1",
"connectionStatus" : 1,
"gatewayKey" : "gk_5e1fe624d05bfb0cc549453a",
"applicationNumber" : 30,
"firmwareVersion" : "1.0",
"needsAttention" : false,
"verificationCode" : "GAAS",
"createdAt" : ISODate("2020-01-16T04:32:17.899Z"),
"updatedAt" : ISODate("2020-01-16T08:53:54.460Z")
}
],
"createdAt" : ISODate("2020-01-16T04:27:16.678Z"),
"updatedAt" : ISODate("2020-01-16T08:53:54.460Z")
},
{
"_id" : ObjectId("5e1fe651d05bfb0cc54947f0"),
"gatewayName" : "AA-GW-THF-002",
"gatewayKey" : "gk_5e1fe651d05bfb0cc54947f0",
"suite" : "area2",
"devices" : [
{
"_id" : ObjectId("5e1fe7a9d05bfb0cc5495cdf"),
"serialNumber" : "129300000012",
"area" : "area2",
"connectionStatus" : 0,
"gatewayKey" : "gk_5e1fe651d05bfb0cc54947f0",
"applicationNumber" : 30,
"firmwareVersion" : "1.0",
"needsAttention" : false,
"verificationCode" : "VG3K",
"createdAt" : ISODate("2020-01-16T04:33:45.698Z"),
"updatedAt" : ISODate("2020-01-16T08:54:17.604Z")
}
],
"createdAt" : ISODate("2020-01-16T04:28:01.532Z"),
"updatedAt" : ISODate("2020-01-16T08:54:17.604Z")
},
],
"createdAt" : ISODate("2020-01-16T04:26:11.941Z"),
"updatedAt" : ISODate("2020-01-16T08:56:32.657Z")
}
],
"createdAt" : ISODate("2020-01-16T04:19:40.310Z"),
"updatedAt" : ISODate("2020-04-06T18:18:39.628Z"),
"__v" : 1,
}
I have accountId, buildingId, gatewayId, deviceId.
I am trying to find matched device object using $lookup operator.
I think I have to fist find the building object by using buildingId and then filter gateway under that building using gatewayId and then find device object using deviceId that I have.
I basically need to have access to device object fields to project in final output.
Having difficulty in coming up with correct pipleline for usingg lookup operator.
I have this so far:
db.getCollection('test').aggregate([
{
$lookup: {
from: 'account',
let: {
accountId: "$accountId"
},
pipeline: [
{
"$match": {
"$expr": {
"$eq": ["$_id", "$$accountId"]
}
}
},
],
as: "accountDetails"
}
}, {
$unwind: "$accountDetails"
}, {
$lookup: {
from: 'account',
let: {
accountId: "$accountId",
buildingId: "$buildingId",
buildings: "$accountDetails"
},
pipeline: [
{
"$match": {
"$expr": {
"$eq": ["$buildings._id", "$$buildingId"] // how to dig through nested document to get to devices ?
}
}
},
],
as: "buildingDetails"
}
}
{
$project: { ... ...
}
])
if I do this:
{
$lookup: {
from: 'account',
localField: "accountId",
foreignField: "_id",
as: "accountDetails"
}
},
accountDetails gives me access the account document based on accountId. but I need to get to buildings > gateways > devices and find the matching device.
UPDATE:
I forgot to mention, I am working with 2 collections here.
sensingresults and accounts.
Main purpose is to aggregate data from sensingresults, but also find deviceId from account collection and return with the result.
That's why lookup is needed to join 2 collections?
UPDATE2:
Current output:
{
"accountId": ObjectId("5e1fe45cd05bfb0cc549297d"),
"avgZoneCountNumber": 0,
"avgZoneCountNumberInstant": 0,
"buildingId": ObjectId("5e1fe5e3d05bfb0cc5494146"),
"companyName": "The AAAAAA",
"createdAt": ISODate("1970-01-01T00:00:00Z"),
"dateHour": "2020-03-19T18",
"deviceId": ObjectId("5e1fe81ed05bfb0cc5496406"),
"gatewayId": ObjectId("5e1fe6a6d05bfb0cc5494d25"),
"minuteBucket": 1
}
Expected result:
{
"accountId": ObjectId("5e1fe45cd05bfb0cc549297d"),
"avgZoneCountNumber": 0,
"avgZoneCountNumberInstant": 0,
"buildingId": ObjectId("5e1fe5e3d05bfb0cc5494146"),
"createdAt": ISODate("1970-01-01T00:00:00Z"),
"dateHour": "2020-03-19T18",
"deviceId": ObjectId("5e1fe81ed05bfb0cc5496406"),
"gatewayId": ObjectId("5e1fe6a6d05bfb0cc5494d25"),
"minuteBucket": 1,
"serialNumber: 1, // this value should come from device object
"area": 1 // this value should come from device object
}
You can find nested device using $filter, $arrayElemAt and $let:
device: {
$let: {
vars: {
building: {
$arrayElemAt: [ { $filter: { input: "$company_name.buildings", cond: { $eq: [ "$$this._id", "$buildingId" ] }} }, 0 ]
}
},
in: {
$let: {
vars: {
gateway: {
$arrayElemAt: [ { $filter: { input: "$$building.gateways", cond: { $eq: [ "$$this._id", "$gatewayId" ] }} }, 0 ]
}
},
in: { $arrayElemAt: [ { $filter: { input: "$$gateway.devices", cond: { $eq: [ "$$this._id", "$deviceId" ] }} }, 0 ] }
}
}
}
}
Full Solution
Related
What I'm trying to achieve is, get the genres that have stations in Canada & sort the genres by the total available stations in ca
Parent Data
{
"_id" : ObjectId("629190bc8a89c22d6dd0a1ec"),
"name" : "106.5 fm",
"stations" : [
ObjectId("62979c7c154494e509356654"),
ObjectId("6291931f40815f4a014f667f"),
],
"__v" : NumberInt(0),
"total_stations" : NumberInt(4)
}
Child Data
{
"_id" : ObjectId("62979c7c154494e5093565c5"),
"name" : "_80s_Radio",
"genres" : [
ObjectId("629190bc8a89c22d6dd0a1ed"),
],
"country" : "The United States Of America",
}
{
"_id" : ObjectId("62979c7c154494e509356654"),
"name" : "_Radio Energy Classic (Italy)",
"genres" : [
ObjectId("629190bc8a89c22d6dd0a1ec"),
],
"country" : "Canada",
}
This is what I have tried so far:
db.categories.aggregate([
{
$lookup: {
from: 'radio_stations',
let: { gid: '$stations' },
pipeline: [
{
$match: {
$expr: {
$and: [
{ $in: ['$_id', '$$gid'] },
{ $eq: ['$country', 'Canada'] },
],
},
},
},
],
as: 'radio_stations',
},
},
]);
Report table sample data
{
"_id" : ObjectId("614415f4a6566a001623b622"),
"record" : [
{
"dateTime" : ISODate("2021-09-17T04:13:39.465Z"),
"status" : "time-in",
"month" : 9,
"day" : 17,
"year" : 2021,
"time" : 1631852019465.0,
"date" : ISODate("2021-09-17T00:00:00.000Z"),
},
{
"dateTime" : ISODate("2021-09-17T04:14:01.182Z"),
"status" : "time-out",
"month" : 9,
"day" : 17,
"year" : 2021,
"time" : 1631852041182.0,
"date" : ISODate("2021-09-17T00:00:00.000Z"),
}
],
"uid" : ObjectId("614415b0a6566a001623b80b"),
"date" : ISODate("2021-09-17T00:00:00.000Z"),
"status" : "time-out",
"createdAt" : ISODate("2021-09-17T04:13:40.102Z"),
"updatedAt" : ISODate("2021-09-17T04:14:01.831Z"),
"__v" : 0
}
Users table sample data
{
"_id" : ObjectId("615c0f6db30aff375cd05ac1"),
"displayName" : "test test",
"firstName" : "test",
"lastName" : "test",
"email" : "test#gmail.com",
"brand" : "Jollibee",
"phone" : "+632312312312312",
"role" : 1,
"isVerified" : true,
"isArchived" : false,
"createdAt" : ISODate("2021-10-05T08:40:13.208Z"),
"updatedAt" : ISODate("2021-10-05T08:40:13.208Z"),
"__v" : 0
}
I have a data like this
db.getCollection('users').aggregate([
{
"$match": { brand: "Jollibee" }
},
{
$lookup: {
from: "orders",
let: { id: 'id' },
pipeline: [
{
$match: {
date: { $gte: ISODate("2020-11-01"), $lt: ISODate("2021-11-31") },
}
}
],
as: "orders",
},
},
{
$project: {
"_id": 1,
"name": 1,
"orders": 1
}
}
])
when I'm using this aggregation I'm getting all the data inserted per user.
What I want to happen is that. I will only get the data that belong to the user and not all the data of all users.
Added the sample documents for each collection
You are not comparing the userIds of both collections. You should add that on your $match. Playground
db.users.aggregate([
{
"$match": {
brand: "Jollibee"
}
},
{
$lookup: {
from: "orders",
let: {
id: "$_id"
},
pipeline: [
{
$match: {
date: {
$gte: ISODate("2020-11-01"),
$lt: ISODate("2021-11-30")
},
$expr: {
$eq: [
"$uid",
"$$id"
]
}
}
}
],
as: "orders",
},
},
{
$project: {
"_id": 1,
"name": 1,
"orders": 1
}
}
])
Pretty new to mongo and haven't been able to figure out how to perform a query.
I have an accounts collection that looks like this:
{
"_id" : ObjectId("1"),
"time" : ISODate("2018-10-20T05:57:15.372Z"),
"profileId" : "1",
"totalUSD" : "1015.5513030613",
"accounts" : [
{
"_id" : ObjectId("2"),
"accountId" : "1",
"currency" : "USD",
"balance" : "530.7934159683763000",
"available" : "530.7934159683763",
"hold" : "0.0000000000000000",
"exchangeRateUSD" : "1"
},
{
"_id" : ObjectId("5"),
"accountId" : "4",
"currency" : "BTC",
"balance" : "0.0759214200000000",
"available" : "0.07592142",
"hold" : "0.0000000000000000",
"exchangeRateUSD" : "6384.995"
},
],
}
I store only exchangeRateUSD for each currency, and not exchangeRateXXX where XXX is currency name, because there can be an arbitrary number of currencies and currency pairs. But when I query the accounts collection it will always be queried by a currency pair, eg: BTC-USD. Keeping it simple for now, I can assume the currency pair will always be XXX-USD.
When I query the accounts collection I'd like to add a 'virtual' field to each account object: exchangeRateCrypto and then on the top-level accounts document I'd like to add totalCrypto which would just be the total account value in the given crypto. Eg: USD account balance * exchangeRateCrypto + crypto account balance * exchangeRateCrypto (which would equal 1).
My current query without the exchangeRateCrypto and totalCrypto looks like:
db.accounts.aggregate([
{ $unwind: '$accounts' },
{ $match: { 'accounts.currency': { $in: [ 'USD', 'BTC' ] }}},
{
$group: {
_id: '$_id',
time: { $first: '$time' },
profileId: { $first: '$profileId' },
accounts: { $push: '$accounts' },
totalUSD: { $sum: { $multiply: [ { $toDouble: '$accounts.balance' }, { $toDouble: '$accounts.exchangeRateUSD' } ] } }
}
}
]);
I'm trying to figure out how to 'reach' into the BTC row and calculate the exchangeRateCrypto by simply doing 1 / exchangeRateUSD and then projecting/returning the accounts document and subdocument as:
{
"_id" : ObjectId("1"),
"time" : ISODate("2018-10-20T05:57:15.372Z"),
"profileId" : "1",
"totalUSD" : "1015.5513030613",
"totalCrypto" : "0.1590527953", // 530.7934159683763 * 0.0001566171939 + 0.07592142 * 1
"accounts" : [
{
"_id" : ObjectId("2"),
"accountId" : "1",
"currency" : "USD",
"balance" : "530.7934159683763000",
"available" : "530.7934159683763",
"hold" : "0.0000000000000000",
"exchangeRateUSD" : "1",
"exchangeRateCrypto" : "0.0001566171939", // 1 / 6384.995
},
{
"_id" : ObjectId("5"),
"accountId" : "4",
"currency" : "BTC",
"balance" : "0.0759214200000000",
"available" : "0.07592142",
"hold" : "0.0000000000000000",
"exchangeRateUSD" : "6384.995",
"exchangeRateCrypto" : "1"
},
],
}
but haven't been able to figure out a good way of doing this.
It seems it should be pretty straightforward, but still learning Mongo.
Any tips?
Thanks!
The solution might be a bit long and probably it can be shortened however I want you to understand proposed way of thinking step by step.
var secondCurrency = "BTC";
var secondCurrencyFieldName = "exchangeRate" + secondCurrency;
var secondCurrencyFieldNameRef = "$" + secondCurrencyFieldName;
var totalFieldName = "total" + secondCurrency;
db.accounts.aggregate([
{ $unwind: "$accounts" },
{ $match: { "accounts.currency": { $in: [ "USD", secondCurrency ] }}},
{
$group: {
_id: "$_id",
time: { $first: "$time" },
profileId: { $first: "$profileId" },
accounts: { $push: "$accounts" },
totalUSD: { $sum: { $multiply: [ { $toDouble: "$accounts.balance" }, { $toDouble: "$accounts.exchangeRateUSD" } ] } }
}
},
{
$addFields: {
[secondCurrencyFieldName]: {
$filter: {
input: "$accounts",
as: "account",
cond: { $eq: [ "$$account.currency", secondCurrency ] }
}
}
}
},
{
$addFields: {
[secondCurrencyFieldName]: {
$let: {
vars: { first: { $arrayElemAt: [ secondCurrencyFieldNameRef, 0 ] } },
in: { $toDouble: "$$first.exchangeRateUSD" }
}
}
}
},
{
$addFields: {
accounts: {
$map: {
input: "$accounts",
as: "account",
in: {
$mergeObjects: [
"$$account",
{
[secondCurrencyFieldName]: {
$cond: [ { $eq: [ "$$account.currency", secondCurrency ] }, 1, { $divide: [ 1, secondCurrencyFieldNameRef ] } ]
}
}
]
}
}
}
}
},
{
$addFields: {
[totalFieldName]: {
$reduce: {
input: "$accounts",
initialValue: 0,
in: {
$add: [
"$$value",
{ $multiply: [ { $toDouble: "$$this.balance" }, "$$this." + secondCurrencyFieldName ] }
]
}
}
}
}
}
]).pretty()
So we can start with $addFields which can either add new field to existing document or repace existing field. After the $group stage you have to find the USD-XXX exchange rate (using $filter and $let + $arrayElemAt in the next pipeline stage). Having this value you can use $addFields again combined with $map and $mergeObjects to add new field to nested array and that field will represent the ratio between USD and XXX currency. Then you can use $addFields again with $reduce to get the total of all accounts for XXX currency.
Output:
{
"_id" : ObjectId("5beeec9fef99bb86541abf7f"),
"time" : ISODate("2018-10-20T05:57:15.372Z"),
"profileId" : "1",
"accounts" : [
{
"_id" : ObjectId("5beeec9fef99bb86541abf7d"),
"accountId" : "1",
"currency" : "USD",
"balance" : "530.7934159683763000",
"available" : "530.7934159683763",
"hold" : "0.0000000000000000",
"exchangeRateUSD" : "1",
"exchangeRateBTC" : 0.00015661719390539853
},
{
"_id" : ObjectId("5beeec9fef99bb86541abf7e"),
"accountId" : "4",
"currency" : "BTC",
"balance" : "0.0759214200000000",
"available" : "0.07592142",
"hold" : "0.0000000000000000",
"exchangeRateUSD" : "6384.995",
"exchangeRateBTC" : 1
}
],
"totalUSD" : 1015.5513030612763,
"exchangeRateBTC" : 6384.995,
"totalexchangeRateBTC" : 0.15905279535242806
}
I have two collections like below,
user Collection
{
"_id" : ObjectId("5af2e946aa546125b5de85cc"),
"name" : "Sudhin",
"email" : "abc#abc.com",
"roles" : [
"Reader",
"Instructor"
],
"createdAt" : ISODate("2018-05-09T12:27:50.651Z"),
"updatedAt" : ISODate("2018-05-16T09:22:07.280Z")
},
{
"_id" : ObjectId("5af2f3a6efb83031faaa3d82"),
"name" : "Rahul",
"email" : "abcd#abc.com",
"roles" : [
"Reader",
"Instructor"
]
"createdAt" : ISODate("2018-05-09T13:12:06.518Z"),
"updatedAt" : ISODate("2018-05-16T09:22:07.281Z")
}
schedulers Collections
{
"_id" : ObjectId("5afd763b8fad29597e1b85ed"),
"title" : "ILT Course",
"type" : "Course",
"ilt" : {
"instructorId" : ObjectId("5af2e946aa546125b5de85cc"),
"type" : "ILT-Offline",
"instructorName" : "Sudhin",
"place" : "*******",
"description" : "******"
},
"startDate" : ISODate("2018-05-10T11:00:00.000Z"),
"endDate" : ISODate("2018-05-15T12:00:00.000Z"),
"createdAt" : ISODate("2018-05-17T12:31:55.574Z"),
"updatedAt" : ISODate("2018-05-17T12:31:55.575Z")
}
In the scheduler collection "ilt.instructorId" is the referenceId for user.
Scheduler collection is having all the details of a particular user schedule.
startDate is the starting date and time of a particular schedule.
endDate is the ending date and time of a particular schedule.
When I pass startDate to endDate(2018-05-05 00:00 - 2018-05-10 00:00), I want to fetch all the users with role instructor and who do not have any scheduled courses in between those dates.
Eg: If I'm passing 2018-05-05 00:00 - 2018-05-10 00:00 it should return
the below document
{
"_id" : ObjectId("5af2f3a6efb83031faaa3d82"),
"name" : "Rahul",
"email" : "abcd#abc.com",
"roles" : [
"Reader",
"Instructor"
]
"createdAt" : ISODate("2018-05-09T13:12:06.518Z"),
"updatedAt" : ISODate("2018-05-16T09:22:07.281Z")
}
I have tried the below query
UserModel.query().aggregate([
{ $match: { roles: { $in: ['Instructor'] } } },
{
$lookup: {
from: "schedulers",
localField: "_id",
foreignField: "ilt.instructorId",
as: "schedule"
}
},
{
$match: {
"schedule.type": "Course",
$and: [
{ 'schedule.endDate': { $not: { $lte: new Date("2018-05-12T12:00:00.000Z") } }},
{ 'schedule.startDate': { $not: { $gte: new Date("2018-05-06T11:00:00.000Z") } }},
]
}
},
{
$project: {
_id: 1,
name: 1,
empId: 1,
startDateTime: "$schedule.startDate",
endDateTime: "$schedule.endDate",
}
}])
Please check below query its help you:
db.getCollection('user').aggregate([
{ $match: { roles: { $in: ['Instructor'] } } },
{
$lookup: {
from: "schedulers",
localField: "_id",
foreignField: "ilt.instructorId",
as: "schedule"
}
},
{
$match: {
"schedule.type": "Course",
$or: [
{ 'schedule.startDate': { $lt: new Date("2018-05-08T11:00:00.000Z") }},
{ 'schedule.endDate': { $gt: new Date("2018-05-14T12:00:00.000Z") }},
]
}
},
{
$unwind: {
path: '$schedule',
preserveNullAndEmptyArrays: true,
},
},
{
$project: {
_id: 1,
name: 1,
empId: 1,
schedule:'$schedule',
startDateTime: "$schedule.startDate",
endDateTime: "$schedule.endDate",
}
}])
I can't understand how to compare a document variable to another document variable. My goal is to match all Authors who have at least one book written in their mothertongue (native language).
However, after unwinding the books array, My $match: { mothertongue: "$bookLang"}} doesn't return return anything, eventhough they're the same in the $project stage.
Can you help me without javascript?
This is my current query:
db.author.aggregate([
{
$unwind: "$books"
},
{
$project: {
books: true,
mothertongue: true,
bookLang: "$books.lang"
}
},
{
$match: { mothertongue: "$bookLang"}
}
])
And here is a sample of the dataset
{
"_id" : ObjectId("5aa7b34a338571a7470be0eb"),
"fname" : "Minna",
"lname" : "Canth",
"mothertongue" : "Finnish",
"birthdate" : ISODate("1844-03-19T00:00:00Z"),
"deathdate" : ISODate("1897-05-12T00:00:00Z"),
"books" : [
{
"title" : "Anna Liisa",
"lang" : "Finnish",
"language" : "finnish",
"edition" : 1,
"cover" : "Hard",
"year" : 1895,
"categorytags" : [
"Finland"
],
"publisher" : [
{
"name" : "Tammi",
"pubId" : ObjectId("5aa7b34a338571a7470be0e4")
}
]
},
{
"title" : "The Burglary and The House of Roinila",
"lang" : "English (UK)",
"translator" : ObjectId("5aa7b34a338571a7470be0ee"),
"cover" : "Soft",
"year" : 2010,
"categorytags" : [
"Finland"
],
"publisher" : [
{
"name" : "Jonathan Cape",
"pubId" : ObjectId("5aa7b34a338571a7470be0e7")
}
]
},
{
"title" : "Anna Liisa 2 ed.",
"lang" : "Finnish",
"language" : "finnish",
"edition" : 2,
"cover" : "hard",
"year" : 1958,
"categorytags" : [
"Finland"
],
"publisher" : [
{
"name" : "Otava",
"pubId" : ObjectId("5aa7b34a338571a7470be0e9")
}
]
}
]
}
End goal. note I'm not interested in formatting just yet, just the filtering
{
"Author" : "Charles Bukowski",
"BooksInMothertongue" : [
"Love Is a Dog from Hell"
]
}
{
"Author" : "Minna Canth",
"BooksInMothertongue" : [
"Anna Liisa",
"Anna Liisa 2 ed."
]
}
...
Try this
db.author.aggregate([{
$match: {
books: {
$ne: []
}
}
},
{
$project: {
books: {
$filter: {
input: "$books",
as: "book",
cond: {
$eq: ["$$book.lang", "$mothertongue"]
}
}
},
fname: 1
}
}, {
$unwind: "$books"
},
{
$group: {
_id: "$_id",
Author: {
$first: '$fname'
},
BooksInMothertongue: {
$push: "$books.title"
}
}
}
])