Dears,
I'm trying to create NewIntVar with lower bound an higher bound equal to the one of the int64:
(-9.223.372.036.854.775.808 to +9.223.372.036.854.775.807)
But I get the Model invalid error when I try to solve the model. The max range I found as working (trying manually) is the following model.NewIntVar(-93.372.036.854.775.808, 9.123.372.036.854.775.807,'pippo')
Do you know why int64 is not supported?
Thanks
Stefano
From the source code I see:
https://github.com/google/or-tools/blob/stable/ortools/sat/cp_model_checker.cc#L90
const int64 ub = proto.domain(proto.domain_size() - 1);
if (lb < kint64min + 2 || ub > kint64max - 1) {
return absl::StrCat(
"var #", v, " domain do not fall in [kint64min + 2, kint64max - 1]. ",
ProtobufShortDebugString(proto));
}
// We do compute ub - lb in some place in the code and do not want to deal
// with overflow everywhere. This seems like a reasonable precondition anyway.
if (lb < 0 && lb + kint64max < ub) {
return absl::StrCat(
"var #", v,
" has a domain that is too large, i.e. |UB - LB| overflow an int64: ",
ProtobufShortDebugString(proto));
}
So the values actually are:
cp_model.INT_MIN + 2 (-9223372036854775806)
cp_model.INT_MAX - 1 (9223372036854775806)
And max-min can't exceed kint64max (9223372036854775807)
You could use INT32_MAX and INT32_MIN instead or a range that satisfies these conditions.
Related
I need to find the shortest set of paths to connect each element of Set A with at least one element of Set B. Repetitions in A OR B are allowed (but not both), and no element can be left unconnected. Something like this:
I'm representing the elements as integers, so the "cost" of a connection is just the absolute value of the difference. I also have a cost for crossing paths, so if Set A = [60, 64] and Set B = [63, 67], then (60 -> 67) incurs an additional cost. There can be any number of elements in either set.
I've calculated the table of transitions and costs (distances and crossings), but I can't find the algorithm to find the lowest-cost solution. I keep ending up with either too many connections (i.e., repetitions in both A and B) or greedy solutions that omit elements (e.g., when A and B are non-overlapping). I haven't been able to find examples of precisely this kind of problem online, so I hoped someone here might be able to help, or at least point me in the right direction. I'm not a graph theorist (obviously!), and I'm writing in Swift, so code examples in Swift (or pseudocode) would be much appreciated.
UPDATE: The solution offered by #Daniel is almost working, but it does occasionally add unnecessary duplicates. I think this may be something to do with the sorting of the priorityQueue -- the duplicates always involve identical elements with identical costs. My first thought was to add some kind of "positional encoding" (yes, Transformer-speak) to the costs, so that the costs are offset by their positions (though of course, this doesn't guarantee unique costs). I thought I'd post my Swift version here, in case anyone has any ideas:
public static func voiceLeading(from chA: [Int], to chB: [Int]) -> Set<[Int]> {
var result: Set<[Int]> = Set()
let im = intervalMatrix(chA, chB: chB)
if im.count == 0 { return [[0]] }
let vc = voiceCrossingCostsMatrix(chA, chB: chB, cost: 4)
// NOTE: cm contains the weights
let cm = VectorUtils.absoluteAddMatrix(im, toMatrix: vc)
var A_links: [Int:Int] = [:]
var B_links: [Int:Int] = [:]
var priorityQueue: [Entry] = []
for (i, a) in chA.enumerated() {
for (j, b) in chB.enumerated() {
priorityQueue.append(Entry(a: a, b: b, cost: cm[i][j]))
if A_links[a] != nil {
A_links[a]! += 1
} else {
A_links[a] = 1
}
if B_links[b] != nil {
B_links[b]! += 1
} else {
B_links[b] = 1
}
}
}
priorityQueue.sort { $0.cost > $1.cost }
while priorityQueue.count > 0 {
let entry = priorityQueue[0]
if A_links[entry.a]! > 1 && B_links[entry.b]! > 1 {
A_links[entry.a]! -= 1
B_links[entry.b]! -= 1
} else {
result.insert([entry.a, (entry.b - entry.a)])
}
priorityQueue.remove(at: 0)
}
return result
}
Of course, since the duplicates have identical scores, it shouldn't be a problem to just remove the extras, but it feels a bit hackish...
UPDATE 2: Slightly less hackish (but still a bit!); since the requirement is that my result should have equal cardinality to max(|A|, |B|), I can actually just stop adding entries to my result when I've reached the target cardinality. Seems okay...
UPDATE 3: Resurrecting this old question, I've recently had some problems arise from the fact that the above algorithm doesn't fulfill my requirement |S| == max(|A|, |B|) (where S is the set of pairings). If anyone knows of a simple way of ensuring this it would be much appreciated. (I'll obviously be poking away at possible changes.)
This is an easy task:
Add all edges of the graph in a priority_queue, where the biggest priority is the edge with the biggest weight.
Look each edge e = (u, v, w) in the priority_queue, where u is in A, v is in B and w is the weight.
If removing e from the graph doesn't leave u or v isolated, remove it.
Otherwise, e is part of the answer.
This should be enough for your case:
#include <bits/stdc++.h>
using namespace std;
struct edge {
int u, v, w;
edge(){}
edge(int up, int vp, int wp){u = up; v = vp; w = wp;}
void print(){ cout<<"("<<u<<", "<<v<<")"<<endl; }
bool operator<(const edge& rhs) const {return w < rhs.w;}
};
vector<edge> E; //edge set
priority_queue<edge> pq;
vector<edge> ans;
int grade[5] = {3, 3, 2, 2, 2};
int main(){
E.push_back(edge(0, 2, 1)); E.push_back(edge(0, 3, 1)); E.push_back(edge(0, 4, 4));
E.push_back(edge(1, 2, 5)); E.push_back(edge(1, 3, 2)); E.push_back(edge(1, 4, 0));
for(int i = 0; i < E.size(); i++) pq.push(E[i]);
while(!pq.empty()){
edge e = pq.top();
if(grade[e.u] > 1 && grade[e.v] > 1){
grade[e.u]--; grade[e.v]--;
}
else ans.push_back(e);
pq.pop();
}
for(int i = 0; i < ans.size(); i++) ans[i].print();
return 0;
}
Complexity: O(E lg(E)).
I think this problem is "minimum weighted bipartite matching" (although searching for " maximum weighted bipartite matching" would also be relevant, it's just the opposite)
I'm looking to create a function that returns a solve for x math equation that can be preformed in ones head (Clearly thats a bit subjective but I'm not sure how else to phrase it).
Example problem: (x - 15)/10 = 6
Note: Only 1 x in the equation
I want to use the operations +, -, *, /, sqrt (Only applied to X -> sqrt(x))
I know that let mathExpression = NSExpression(format: question) converts strings into math equations but when solving for x I'm not sure how to go about doing this.
I previously asked Generating random doable math problems swift for non solving for x problems but I'm not sure how to convert that answer into solving for x
Edit: Goal is to generate an equation and have the user solve for the variable.
Since all you want is a string representing an equation and a value for x, you don't need to do any solving. Just start with x and transform it until you have a nice equation. Here's a sample: (copy and paste it into a Playground to try it out)
import UIKit
enum Operation: String {
case addition = "+"
case subtraction = "-"
case multiplication = "*"
case division = "/"
static func all() -> [Operation] {
return [.addition, .subtraction, .multiplication, .division]
}
static func random() -> Operation {
let all = Operation.all()
let selection = Int(arc4random_uniform(UInt32(all.count)))
return all[selection]
}
}
func addNewTerm(formula: String, result: Int) -> (formula: String, result: Int) {
// choose a random number and operation
let operation = Operation.random()
let number = chooseRandomNumberFor(operation: operation, on: result)
// apply to the left side
let newFormula = applyTermTo(formula: formula, number: number, operation: operation)
// apply to the right side
let newResult = applyTermTo(result: result, number: number, operation: operation)
return (newFormula, newResult)
}
func applyTermTo(formula: String, number:Int, operation:Operation) -> String {
return "\(formula) \(operation.rawValue) \(number)"
}
func applyTermTo(result: Int, number:Int, operation:Operation) -> Int {
switch(operation) {
case .addition: return result + number
case .subtraction: return result - number
case .multiplication: return result * number
case .division: return result / number
}
}
func chooseRandomNumberFor(operation: Operation, on number: Int) -> Int {
switch(operation) {
case .addition, .subtraction, .multiplication:
return Int(arc4random_uniform(10) + 1)
case .division:
// add code here to find integer factors
return 1
}
}
func generateFormula(_ numTerms:Int = 1) -> (String, Int) {
let x = Int(arc4random_uniform(10))
var leftSide = "x"
var result = x
for i in 1...numTerms {
(leftSide, result) = addNewTerm(formula: leftSide, result: result)
if i < numTerms {
leftSide = "(" + leftSide + ")"
}
}
let formula = "\(leftSide) = \(result)"
return (formula, x)
}
func printFormula(_ numTerms:Int = 1) {
let (formula, x) = generateFormula(numTerms)
print(formula, " x = ", x)
}
for i in 1...30 {
printFormula(Int(arc4random_uniform(3)) + 1)
}
There are some things missing. The sqrt() function will have to be implemented separately. And for division to be useful, you'll have to add in a system to find factors (since you presumably want the results to be integers). Depending on what sort of output you want, there's a lot more work to do, but this should get you started.
Here's sample output:
(x + 10) - 5 = 11 x = 6
((x + 6) + 6) - 1 = 20 x = 9
x - 2 = 5 x = 7
((x + 3) * 5) - 6 = 39 x = 6
(x / 1) + 6 = 11 x = 5
(x * 6) * 3 = 54 x = 3
x * 9 = 54 x = 6
((x / 1) - 6) + 8 = 11 x = 9
Okay, let’s assume from you saying “Note: Only 1 x in the equation” that what you want is a linear equation of the form y = 0 = β1*x + β0, where β0 and β1 are the slope and intercept coefficients, respectively.
The inverse of (or solution to) any linear equation is given by x = -β0/β1. So what you really need to do is generate random integers β0 and β1 to create your equation. But since it should be “solvable” in someone’s head, you probably want β0 to be divisible by β1, and furthermore, for β1 and β0/β1 to be less than or equal to 12, since this is the upper limit of the commonly known multiplication tables. In this case, just generate a random integer β1 ≤ 12, and β0 equal to β1 times some integer n, 0 ≤ n ≤ 12.
If you want to allow simple fractional solutions like 2/3, just multiply the denominator and the numerator into β0 and β1, respectively, taking care to prevent the numerator or denominator from getting too large (12 is again a good limit).
Since you probably want to make y non-zero, just generate a third random integer y between -12 and 12, and change your output equation to y = β1*x + β0 + y.
Since you mentioned √ could occur over the x variable only, that is pretty easy to add; the solution (to 0 = β1*sqrt(x) + β0) is just x = (β0/β1)**2.
Here is some very simple (and very problematic) code for generating random integers to get you started:
import func Glibc.srand
import func Glibc.rand
import func Glibc.time
srand(UInt32(time(nil)))
print(rand() % 12)
There are a great many answers on this website that deal with better ways to generate random integers.
I am writing a function that has to find the position of a given number within numerical ranges, the range is a variable within the code, for now lets say the range is 4 so the ranges will look like the following:
[ 0-3 ]
[ 4-7 ]
[ 8-11 ]
[ 12-15 ]
[ 16-19 ]
[ 20-23 ]
[ 24-27 ]
What i would like to achieve is to find the range where a given number belongs to, in the quickest way possibly,as this operation is performed over million of events.
So what i have wrote so far, and it works fine, is the following:
public String findRange(int range,int number2bFound)
{
int base = 0;
if (number2bFound == 0)
number2bFound = 1.0;
int higher = 0;
while (base <= number2bFound)
{
higher = base + (range - 1);
if ((base <= number2bFound) && (higher >= number2bFound))
return base + "-" + higher;
base += range;
}
return null;
}
So as i said this works, but i am sure this can be done implemented more efficiently, by only using the value of number2bFonud and the range and excluding the very expensive loop.
if all the ranges have the same size and it start from 0, a simple division will do, additionally you can find the position in the sub-range with a modulo operation.
The procedure is simple, find the integer division of your number n against yours range size and that will give you in which sub-range it belong, to find the position inside the sub-range find the modulo of your number again against the range size
here is a example python
def find_position(n,size):
return (n//size, n%size)
with range of size 4
>>> test=[ [0,1,2,3], [4,5,6,7], [8,9,10,11], [12,13,14,15], [16,17,18,19], [20,21,22,23] ]
>>> find_position(6,4)
(1, 2)
>>> test[1][2]
6
>>> find_position(11,4)
(2, 3)
>>> test[2][3]
11
>>>
with range 5
>>> test=[ [0,1,2,3,4], [5,6,7,8,9] ,[10,11,12,13,14],[15,16,17,18,19], [20,21,22,23,24] ]
>>> find_position(11,5)
(2, 1)
>>> test[2][1]
11
>>>
The procedure is a follow, let Size be the size of each sub-range and n the number you wan to locate, then you only need to the be the take the number n you want to find.
translate that to java should be very simple, excuse if my is a little rusty but is something like this I think
public String findRange(int range,int number2bFound){
int sub_ran_pos, pos;
sub_ran_pos = (int) number2bFound/range; //or however the integer division is in java
pos = number2bFound % range; //or however the modulo operation it is in java
return sub_ran_pos + "-" + pos; //or the appropriate return type, for this
}
(I don't remember, but if java is 1-index then you need to add 1 to each number to get right result)
I'm trying to get the average of an array of Ints using the following code:
let numbers = [1,2,3,4,5]
let avg = numbers.reduce(0) { return $0 + $1 / numbers.count }
print(avg) // 1
Which is obviously incorrect. However, if I remove the division to the outside of the closure:
let numbers = [1,2,3,4,5]
let avg = numbers.reduce(0) { return $0 + $1 } / numbers.count
print(avg) // 3
Bingo! I think I remember reading somewhere (can't recall if it was in relation to Swift, JavaScript or programming math in general) that this has something to do with the fact that dividing the sum by the length yields a float / double e.g. (1 + 2) / 5 = 0.6 which will be rounded down within the sum to 0. However I would expect ((1 + 2) + 3) / 5 = 1.2 to return 1, however it too seems to return 0.
With doubles, the calculation works as expected whichever way it's calculated, as long as I box the count integer to a double:
let numbers = [1.0,2.0,3.0,4.0,5.0]
let avg = numbers.reduce(0) { return $0 + $1 / Double(numbers.count) }
print(avg) // 3
I think I understand the why (maybe not?). But I can't come up with a solid example to prove it.
Any help and / or explanation is very much appreciated. Thanks.
The division does not yield a double; you're doing integer division.
You're not getting ((1 + 2) + 3 etc.) / 5.
In the first case, you're getting (((((0 + (1/5 = 0)) + (2/5 = 0)) + (3/5 = 0)) + (4/5 = 0)) + (5/5 = 1)) = 0 + 0 + 0 + 0 + 0 + 1 = 1.
In the second case, you're getting ((((((0 + 1) + 2) + 3) + 4) + 5) / 5) = 15 / 5 = 3.
In the third case, double precision loss is much smaller than the integer, and you get something like (((((0 + (1/5.0 = 0.2)) + (2/5.0 = 0.4)) + (3/5.0 = 0.6)) + (4/5.0 = 0.8)) + (5/5.0 = 1.0)).
The problem is that what you are attempting with the first piece of code does not make sense mathematically.
The average of a sequence is the sum of the entire sequence divided by the number of elements.
reduce calls the lambda function for every member of the collection it is being called on. Thus you are summing and dividing all the way through.
For people finding it hard to understand the original answer.
Consider.
let x = 4
let y = 3
let answer = x/y
You expect the answer to be a Double, but no, it is an Int. For you to get an answer which is not a rounded down Int. You must explicitly state the values to be Double. See below
let doubleAnswer = Double(x)/Double(y)
Hope this helped.
My question is if there is a good way to use MuPAD functions in a Matlab script. The background is that I have a problem where I need to find all solutions to a set of non-linear equations. The previous solution was to use solve in Matlab, which works for some of my simulations (i.e., some of the sets of input T) but not always. So instead I'm using MuPAD in the following way:
function ut1 = testMupadSolver(T)
% # Input T should be a vector of 15 elements
mupadCommand = ['numeric::polysysroots({' eq1(T) ' = 0,' ...
eq2(T) '= 0},[u, v])'];
allSolutions = evalin(symengine, mupadCommand);
ut1 = allSolutions;
end
function strEq = eq1(T)
sT = #(x) ['(' num2str(T(x)) ')'];
strEq = [ '-' sT(13) '*u^4 + (4*' sT(15) '-2*' sT(10) '-' sT(11) '*v)*u^3 + (3*' ...
sT(13) '-3*' sT(6) '+v*(3*' sT(14) '-2*' sT(7) ')-' sT(8) '*v^2)*u^2 + (2*' ...
sT(10) '-4*' sT(1) '+v*(2*' sT(11) '-3*' sT(2) ')+v^2*(2*' sT(12) ' - 2*' ...
sT(3) ')-' sT(4) '*v^3)*u + v*(' sT(7) '+' sT(8) '*v+' sT(9) '*v^2)+' sT(6)];
end
function strEq = eq2(T)
sT = #(x) ['(' num2str(T(x)) ')'];
strEq = ['(' sT(14) '-' sT(13) '*v)*u^3 + u^2*' '(' sT(11) '+(2*' sT(12) '-2*' sT(10) ...
')*v-' sT(11) '*v^2) + u*(' sT(7) '+v*(2*' sT(8) '-3*' sT(6) ')+v^2*(3*' sT(9) ...
'-2*' sT(7) ') - ' sT(8) '*v^3) + v*(2*' sT(3) '-4*' sT(1) '+v*(3*' sT(4) ...
'-3*' sT(2) ')+v^2*(4*' sT(5) ' - 2*' sT(3) ')-' sT(4) '*v^3)+' sT(2)];
end
I have two queries:
1) In order to use MuPAD I need to rewrite my two equations for the equation-system as strings, as you can see above. Is there a better way to do this, preferably without the string step?
2) And regarding the format output; when
T = [0 0 0 0 0 0 0 0 0 0 1 0 1 0 1];
the output is:
testMupadSolver(T)
ans =
matrix([[u], [v]]) in {matrix([[4.4780323328249527319374854327354], [0.21316518769990291263811232040432]]), matrix([[- 0.31088044854742790561428736573347 - 0.67937835289645431373983117422178*i], [1.1103383836576028262792542770062 + 0.39498445715599777249947213893789*i]]), matrix([[- 0.31088044854742790561428736573347 + 0.67937835289645431373983117422178*i], [1.1103383836576028262792542770062 - 0.39498445715599777249947213893789*i]]), matrix([[0.47897094942962218512261248590261], [-1.26776233072168360314707025141]]), matrix([[-0.83524238515971910583152318717102], [-0.66607962429342496204955062300669]])} union solvelib::VectorImageSet(matrix([[0], [z]]), z, C_)
Can MuPAD give the solutions as a set of vectors or similarly? In order to use the answer above I need to sort out the solutions from that string-set of solutions. Is there a clever way to do this? My solution so far is to find the signs I know will be present in the solution, such as '([[' and pick the numbers following, which is really ugly, and if the solution for some reason looks a little bit different than the cases I've covered it doesn't work.
EDIT
When I'm using the solution suggested in the answer below by #horchler, I get the same solution as with my previous implementation. But for some cases (not all) it takes much longer time. Eg. for the T below the solution suggested below takes more than a minute whilst using evalin (my previous implementation) takes one second.
T = [2.4336 1.4309 0.5471 0.0934 9.5838 -0.1013 -0.2573 2.4830 ...
36.5464 0.4898 -0.5383 61.5723 1.7637 36.0816 11.8262]
The new function:
function ut1 = testMupadSolver(T)
% # Input T should be a vector of 15 elements
allSolutions = feval(symengine,'numeric::polysysroots', ...
[eq1(T),eq2(T)],'[u,v]');
end
function eq = eq1(T)
syms u v
eq = -T(13)*u^4 + (4*T(15) - 2*T(10) - T(11)*v)*u^3 + (3*T(13) - 3*T(6) ...
+ v*(3*T(14) -2*T(7)) - T(8)*v^2)*u^2 + (2*T(10) - 4*T(1) + v*(2*T(11) ...
- 3*T(2)) + v^2*(2*T(12) - 2*T(3)) - T(4)*v^3)*u + v*(T(7) + T(8)*v ...
+ T(9)*v^2) + T(6);
end
function eq = eq2(T)
syms u v
eq = (T(14) - T(13)*v)*u^3 + u^2*(T(11) + (2*T(12) - 2*T(10))*v ...
- T(11)*v^2) + u*(T(7) + v*(2*T(8) - 3*T(6) ) + v^2*(3*T(9) - 2*T(7)) ...
- T(8)*v^3) + v*(2*T(3) - 4*T(1) + v*(3*T(4) - 3*T(2)) + v^2*(4*T(5) ...
- 2*T(3)) - T(4)*v^3) + T(2);
end
Is there a good reason to why it takes so much longer time?
Firstly, Matlab communicates with MuPAD via string commands so ultimately there is no way of getting around the use of strings. And because it's the native format, if you're passing large amounts of data into MuPAD, the best approach will be to convert everything to strings fast and efficiently (sprintf is usually best). However, in your case, I think that you can use feval instead of evalin which allows you to pass in regular Matlab datatypes (under the hood sym/feval does the string conversion and calls evalin). This method is discussed in this MathWorks article. The following code could be used:
T = [0 0 0 0 0 0 0 0 0 0 1 0 1 0 1];
syms u v;
eq1 = -T(13)*u^4 + (4*T(15) - 2*T(10) - T(11)*v)*u^3 + (3*T(13) - 3*T(6) ...
+ v*(3*T(14) -2*T(7)) - T(8)*v^2)*u^2 + (2*T(10) - 4*T(1) + v*(2*T(11) ...
- 3*T(2)) + v^2*(2*T(12) - 2*T(3)) - T(4)*v^3)*u + v*(T(7) + T(8)*v ...
+ T(9)*v^2) + T(6);
eq2 = (T(14) - T(13)*v)*u^3 + u^2*(T(11) + (2*T(12) - 2*T(10))*v ...
- T(11)*v^2) + u*(T(7) + v*(2*T(8) - 3*T(6) ) + v^2*(3*T(9) - 2*T(7)) ...
- T(8)*v^3) + v*(2*T(3) - 4*T(1) + v*(3*T(4) - 3*T(2)) + v^2*(4*T(5) ...
- 2*T(3)) - T(4)*v^3) + T(2);
allSolutions = feval(symengine, 'numeric::polysysroots',[eq1,eq2],'[u,v]');
The last argument still needed to be a string (or omitted) and adding ==0 to the equations also doesn't work, but the zero is implicit anyways.
For the second question, the result returned by numeric::polysysroots is very inconvenient and not easy to work with. It's a set (DOM_SET) of matrices. I tried using coerce to convert the result to something else to no avail. I think you best bet it to convert the output to a string (using char) and parse the result. I do this for simpler output formats. I'm not sure if it will be helpful, but feel free to look at my sym2float which just handles symbolic matrices (the 'matrix([[ ... ]])' part go your output) using a few optimizations.
A last thing. Is there a reason your helper function includes superfluous parentheses? This seems sufficient
sT = #(x)num2str(T(x),17);
or
sT = #(x)sprintf('%.17g',T(x));
Note that num2str only converts to four decimal places by default. int2str (or %d should be used if T(x) is always an integer).