Implemented train function in PyTorch - neural-network

I'm building models of neural networks for some experiments. I use PyTorch and each time I train a model I use the following code:
def train_and_evaluate(net, optimizer, criterion):
start_time = time.time()
train_losses, test_losses, train_acc, test_acc = [], [], [], []
# net.double()
for epoch in range(num_epochs):
epoch_start_time = time.time()
running_loss_train, running_loss_test = 0.0, 0.0
total, correct, test_total, test_correct = 0, 0, 0, 0
# Train mode
net.train()
#Loop batches
for i, (images, labels) in enumerate(train_loader):
if use_cuda and torch.cuda.is_available():
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = net(images.detach())
# import pdb; pdb.set_trace()
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss_train += loss.item()
# Calculate training accuracy for epoch
_, predicted = torch.max(outputs.data, 1) # Get th
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Calculate test loss and accuracy for epoch
net.eval()
with torch.no_grad():
for images, labels in test_loader:
if use_cuda and torch.cuda.is_available():
images = images.cuda()
labels = labels.cuda()
outputs = net(images)
test_loss = criterion(outputs, labels)
running_loss_test += test_loss.item()
_, predicted = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (predicted == labels).sum().item()
if (epoch + 1) % 10 == 0 or epoch == 0:
print(f'Epoch [{epoch+1:02d}/{num_epochs}]\tTime: {time.time() - epoch_start_time:.2f}\tTrain Loss: {(running_loss_train / len(train_loader)):.4f}\tTrain Acc: {(correct / total):.0%}\tTest Loss: {running_loss_test / len(test_loader):.4f}\tTest Accuracy: {(test_correct / test_total):.0%}'.expandtabs(4))
train_losses.append(running_loss_train / len(train_loader))
test_losses.append(running_loss_test / len(test_loader))
train_acc.append(correct / total)
test_acc.append(test_correct / test_total)
print(f'Training time: {(time.time() - start_time)/60:5.2f} min.')
return train_losses, test_losses, train_acc, test_acc
I simply copy and paste it from other projects and I find it redundant to use that same code each time, it is useful almost in every model I test and usually looks quite similar. I wonder if there is a shortcut or some module with implementation of this function to reduce number of code lines and make it more readable. Something like:
model = NeuralNetwork()
train_losses, test_losses, train_acc, test_acc = train(model,
epochs=50,
verbose=True,
cuda=True,
optimizer=optimizer,
criterion=criterion)
That I could just pass the parameters for training and not explicitly 'write' the code evey time.

Use modules
Save train_and_evaluate function into python file. The file name is the module name with the suffix .py appended. for Ex.: model_util.py
Now you can access train_and_evaluate function using importing model_util module. like
import model_util
model = NeuralNetwork()
train_losses, test_losses, train_acc, test_acc = model_util.train_and_evaluate(...)

Related

Given groups=1, weight of size [10, 1, 5, 5], expected input[2, 3, 28, 28] to have 1 channels, but got 3 channels instead

I am trying to run CNN with train MNIST, but test on my own written digits. To do that I wrote the following code but I getting an error in title of this questions:
I am trying to run CNN with train MNIST, but test on my own written digits. To do that I wrote the following code but I getting an error in title of this questions:
batch_size = 64
train_dataset = datasets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = ImageFolder('my_digit_images/', transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
#print(self.conv1.weight.shape)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv3 = nn.Conv2d(20, 20, kernel_size=3)
#print(self.conv2.weight.shape)
self.mp = nn.MaxPool2d(2)
self.fc = nn.Linear(320, 10)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.conv1(x))
#print(x.shape)
x = F.relu(self.mp(self.conv2(x)))
x = F.relu(self.mp(self.conv3(x)))
#print("2.", x.shape)
# x = F.relu(self.mp(self.conv3(x)))
x = x.view(in_size, -1) # flatten the tensor
#print("3.", x.shape)
x = self.fc(x)
return F.log_softmax(x)
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).data
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
MNIST dataset contains black and white 1-channel images, while yours are 3-channeled RGB probably. Either recode your images or preprocess it like
img = img[:,0:1,:,:]
You can do it with custom transform, adding it after transforms.ToTensor()
The images in training and testing should follow the same distribution. Since MNIST data is by default in Grayscale and it is expected that you didn't change the channels, then the model expects the same number of channels in testing.
The following code is an example of how it's done using a transformation.
Following the order defined below, it
Converts the image to a single channel (Grayscale)
Resize the image to the size of the default MNIST data
Convert the image to a tensor
Normalize the tensor to have same mean and std as that of during training(assuming that you used the same values).
test_dataset = ImageFolder('my_digit_images/', transform=transforms.Compose([transforms.Grayscale(num_output_channels=1),
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))]))

I want to use Numpy to simulate the inference process of a quantized MobileNet V2 network, but the outcome is different with pytorch realized one

Python version: 3.8
Pytorch version: 1.9.0+cpu
Platform: Anaconda Spyder5.0
To reproduce this problem, just copy every code below to a single file.
The ILSVRC2012_val_00000293.jpg file used in this code is shown below, you also need to download it and then change its destination in the code.
Some background of this problem:
I am now working on a project that aims to develop a hardware accelerator to complete the inference process of the MobileNet V2 network. I used pretrained quantized Pytorch model to simulate the outcome, and the result comes out very well.
In order to use hardware to complete this task, I wish to know every inputs and outputs as well as intermidiate variables during runing this piece of pytorch code. I used a package named torchextractor to fetch the outcomes of first layer, which in this case, is a 3*3 convolution layer.
import numpy as np
import torchvision
import torch
from torchvision import transforms, datasets
from PIL import Image
from torchvision import transforms
import torchextractor as tx
import math
#########################################################################################
##### Processing of input image
#########################################################################################
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,])
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
#image file destination
filename = "D:\Project_UM\MobileNet_VC709\MobileNet_pytorch\ILSVRC2012_val_00000293.jpg"
input_image = Image.open(filename)
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
#########################################################################################
#########################################################################################
#########################################################################################
#----First verify that the torchextractor class should not influent the inference outcome
# ofmp of layer1 before putting into torchextractor
a,b,c = quantize_tensor(input_batch)# to quantize the input tensor and return an int8 tensor, scale and zero point
input_qa = torch.quantize_per_tensor(torch.tensor(input_batch.clone().detach()), b, c, torch.quint8)# Using quantize_per_tensor method of torch
# Load a quantized mobilenet_v2 model
model_quantized = torchvision.models.quantization.mobilenet_v2(pretrained=True, quantize=True)
model_quantized.eval()
with torch.no_grad():
output = model_quantized.features[0][0](input_qa)# Ofmp of layer1, datatype : quantized_tensor
# print("FM of layer1 before tx_extractor:\n",output.int_repr())# Ofmp of layer1, datatype : int8 tensor
output1_clone = output.int_repr().detach().numpy()# Clone ofmp of layer1, datatype : ndarray
#########################################################################################
#########################################################################################
#########################################################################################
# ofmp of layer1 after adding torchextractor
model_quantized_ex = tx.Extractor(model_quantized, ["features.0.0"])#Capture of the module inside first layer
model_output, features = model_quantized_ex(input_batch)# Forward propagation
# feature_shapes = {name: f.shape for name, f in features.items()}
# print(features['features.0.0']) # Ofmp of layer1, datatype : quantized_tensor
out1_clone = features['features.0.0'].int_repr().numpy() # Clone ofmp of layer1, datatype : ndarray
if(out1_clone.all() == output1_clone.all()):
print('Model with torchextractor attached output the same value as the original model')
else:
print('Torchextractor method influence the outcome')
Here I define a numpy quantization scheme based on the quantization scheme proposed by
Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference
# Convert a normal regular tensor to a quantized tensor with scale and zero_point
def quantize_tensor(x, num_bits=8):# to quantize the input tensor and return an int8 tensor, scale and zero point
qmin = 0.
qmax = 2.**num_bits - 1.
min_val, max_val = x.min(), x.max()
scale = (max_val - min_val) / (qmax - qmin)
initial_zero_point = qmin - min_val / scale
zero_point = 0
if initial_zero_point < qmin:
zero_point = qmin
elif initial_zero_point > qmax:
zero_point = qmax
else:
zero_point = initial_zero_point
# print(zero_point)
zero_point = int(zero_point)
q_x = zero_point + x / scale
q_x.clamp_(qmin, qmax).round_()
q_x = q_x.round().byte()
return q_x, scale, zero_point
#%%
# #############################################################################################
# --------- Simulate the inference process of layer0: conv33 using numpy
# #############################################################################################
# get the input_batch quantized buffer data
input_scale = b.item()
input_zero = c
input_quantized = a[0].detach().numpy()
# get the layer0 output scale and zero_point
output_scale = model_quantized.features[0][0].state_dict()['scale'].item()
output_zero = model_quantized.features[0][0].state_dict()['zero_point'].item()
# get the quantized weight with scale and zero_point
weight_scale = model_quantized.features[0][0].state_dict()["weight"].q_scale()
weight_zero = model_quantized.features[0][0].state_dict()["weight"].q_zero_point()
weight_quantized = model_quantized.features[0][0].state_dict()["weight"].int_repr().numpy()
# print(weight_quantized)
# print(weight_quantized.shape)
# bias_quantized,bias_scale,bias_zero= quantize_tensor(model_quantized.features[0][0].state_dict()["bias"])# to quantize the input tensor and return an int8 tensor, scale and zero point
# print(bias_quantized.shape)
bias = model_quantized.features[0][0].state_dict()["bias"].detach().numpy()
# print(input_quantized)
print(type(input_scale))
print(type(output_scale))
print(type(weight_scale))
Then I write a quantized 2D convolution using numpy, hope to figure out every details in pytorch data flow during the inference.
#%% numpy simulated layer0 convolution function define
def conv_cal(input_quantized, weight_quantized, kernel_size, stride, out_i, out_j, out_k):
weight = weight_quantized[out_i]
input = np.zeros((input_quantized.shape[0], kernel_size, kernel_size))
for i in range(weight.shape[0]):
for j in range(weight.shape[1]):
for k in range(weight.shape[2]):
input[i][j][k] = input_quantized[i][stride*out_j+j][stride*out_k+k]
# print(np.dot(weight,input))
# print(input,"\n")
# print(weight)
return np.multiply(weight,input).sum()
def QuantizedConv2D(input_scale, input_zero, input_quantized, output_scale, output_zero, weight_scale, weight_zero, weight_quantized, bias, kernel_size, stride, padding, ofm_size):
output = np.zeros((weight_quantized.shape[0],ofm_size,ofm_size))
input_quantized_padding = np.full((input_quantized.shape[0],input_quantized.shape[1]+2*padding,input_quantized.shape[2]+2*padding),0)
zero_temp = np.full(input_quantized.shape,input_zero)
input_quantized = input_quantized - zero_temp
for i in range(input_quantized.shape[0]):
for j in range(padding,padding + input_quantized.shape[1]):
for k in range(padding,padding + input_quantized.shape[2]):
input_quantized_padding[i][j][k] = input_quantized[i][j-padding][k-padding]
zero_temp = np.full(weight_quantized.shape, weight_zero)
weight_quantized = weight_quantized - zero_temp
for i in range(output.shape[0]):
for j in range(output.shape[1]):
for k in range(output.shape[2]):
# output[i][j][k] = (weight_scale*input_scale)*conv_cal(input_quantized_padding, weight_quantized, kernel_size, stride, i, j, k) + bias[i] #floating_output
output[i][j][k] = weight_scale*input_scale/output_scale*conv_cal(input_quantized_padding, weight_quantized, kernel_size, stride, i, j, k) + bias[i]/output_scale + output_zero
output[i][j][k] = round(output[i][j][k])
# int_output
return output
Here I input the same image, weight, and bias together with their zero_point and scale, then compare this "numpy simulated" result to the PyTorch calculated one.
quantized_model_out1_int8 = np.squeeze(features['features.0.0'].int_repr().numpy())
print(quantized_model_out1_int8.shape)
print(quantized_model_out1_int8)
out1_np = QuantizedConv2D(input_scale, input_zero, input_quantized, output_scale, output_zero, weight_scale, weight_zero, weight_quantized, bias, 3, 2, 1, 112)
np.save("out1_np.npy",out1_np)
for i in range(quantized_model_out1_int8.shape[0]):
for j in range(quantized_model_out1_int8.shape[1]):
for k in range(quantized_model_out1_int8.shape[2]):
if(out1_np[i][j][k] < 0):
out1_np[i][j][k] = 0
print(out1_np)
flag = np.zeros(quantized_model_out1_int8.shape)
for i in range(quantized_model_out1_int8.shape[0]):
for j in range(quantized_model_out1_int8.shape[1]):
for k in range(quantized_model_out1_int8.shape[2]):
if(quantized_model_out1_int8[i][j][k] == out1_np[i][j][k]):
flag[i][j][k] = 1
out1_np[i][j][k] = 0
quantized_model_out1_int8[i][j][k] = 0
# Compare the simulated result to extractor fetched result, gain the total hit rate
print(flag.sum()/(112*112*32)*100,'%')
If the "numpy simulated" results are the same as the extracted one, call it a hit. Print the total hit rate, it shows that numpy gets 92% of the values right. Now the problem is, I have no idea why the rest 8% of values come out wrong.
Comparison of two outcomes:
The picture below shows the different values between Numpy one and PyTorch one, the sample channel is index[1]. The left upper corner is Numpy one, and the upright corner is PyTorch one, I have set all values that are the same between them to 0, as you can see, most of the values just have a difference of 1(This can be view as the error brought by the precision loss of fixed point arithmetics), but some have large differences, e.g. the value[1][4], 121 vs. 76 (I don't know why)
Focus on one strange value:
This code is used to replay the calculation process of the value[1][4], originally I was expecting a trial and error process could lead me to solve this problem, to get my wanted number of 76, but no matter how I tried, it didn't output 76. If you want to try this, I paste this code for your convenience.
#%% A test code to check the calculation process
weight_quantized_sample = weight_quantized[2]
M_t = input_scale * weight_scale / output_scale
ifmap_t = np.int32(input_quantized[:,1:4,7:10])
weight_t = np.int32(weight_quantized_sample)
bias_t = bias[2]
bias_q = bias_t/output_scale
res_t = 0
for ch in range(3):
ifmap_offset = ifmap_t[ch]-np.int32(input_zero)
weight_offset = weight_t[ch]-np.int32(weight_zero)
res_ch = np.multiply(ifmap_offset, weight_offset)
res_ch = res_ch.sum()
res_t = res_t + res_ch
res_mul = M_t*res_t
# for n in range(1, 30):
# res_mul = multiply(n, M_t, res_t)
res_t = round(res_mul + output_zero + bias_q)
print(res_t)
Could you help me out of this, have been stuck here for a long time.
I implemented my own version of quantized convolution and got from 99.999% to 100% hitrate (and mismatch of a single value is by 1 that I can consider to be a rounding issue). The link on the paper in the question helped a lot.
But I found that your formulas are the same as mine. So I don't know what was your issue. As I understand quantization in pytorch is hardware dependent.
Here is my code:
def my_Conv2dRelu_b2(input_q, conv_layer, output_shape):
'''
Args:
input_q: quantized tensor
conv_layer: quantized tensor
output_shape: the pre-computed shape of the result
Returns:
'''
output = np.zeros(output_shape)
# extract needed float numbers from quantized operations
weights_scale = conv_layer.weight().q_per_channel_scales()
input_scale = input_q.q_scale()
weights_zp = conv_layer.weight().q_per_channel_zero_points()
input_zp = input_q.q_zero_point()
# extract needed convolution parameters
padding = conv_layer.padding
stride = conv_layer.stride
# extract float numbers for results
output_zp = conv_layer.zero_point
output_scale = conv_layer.scale
conv_weights_int = conv_layer.weight().int_repr()
input_int = input_q.int_repr()
biases = conv_layer.bias().numpy()
for k in range(input_q.shape[0]):
for i in range(conv_weights_int.shape[0]):
output[k][i] = manual_convolution_quant(
input_int[k].numpy(),
conv_weights_int[i].numpy(),
biases[i],
padding=padding,
stride=stride,
image_zp=input_zp, image_scale=input_scale,
kernel_zp=weights_zp[i].item(), kernel_scale=weights_scale[i].item(),
result_zp=output_zp, result_scale=output_scale
)
return output
def manual_convolution_quant(image, kernel, b, padding, stride, image_zp, image_scale, kernel_zp, kernel_scale,
result_zp, result_scale):
H = image.shape[1]
W = image.shape[2]
new_H = H // stride[0]
new_W = W // stride[1]
results = np.zeros([new_H, new_W])
M = image_scale * kernel_scale / result_scale
bias = b / result_scale
paddedIm = np.pad(
image,
[(0, 0), (padding[0], padding[0]), (padding[1], padding[1])],
mode="constant",
constant_values=image_zp,
)
s = kernel.shape[1]
for i in range(new_H):
for j in range(new_W):
patch = paddedIm[
:, i * stride[0]: i * stride[0] + s, j * stride[1]: j * stride[1] + s
]
res = M * ((kernel - kernel_zp) * (patch - image_zp)).sum() + result_zp + bias
if res < 0:
res = 0
results[i, j] = round(res)
return results
Code to compare pytorch and my own version.
def calc_hit_rate(array1, array2):
good = (array1 == array2).astype(np.int).sum()
all = array1.size
return good / all
# during inference
y2 = model.conv1(y1)
y2_int = torch.int_repr(y2)
y2_int_manual = my_Conv2dRelu_b2(y1, model.conv1, y2.shape)
print(f'y2 hit rate= {calc_hit_rate(y2.int_repr().numpy(), y2_int_manual)}') #hit_rate=1.0

ValueError: Expected input batch_size (24) to match target batch_size (8)

Got many links to solve this read different stackoverflow answer related to this but not able to figure it out .
My image size is torch.Size([8, 3, 16, 16]).
My architechture is as below
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# linear layer (784 -> 1 hidden node)
self.fc1 = nn.Linear(16 * 16, 768)
self.fc2 = nn.Linear(768, 64)
self.fc3 = nn.Linear(64, 10)
self.dropout = nn.Dropout(p=.5)
def forward(self, x):
# flatten image input
x = x.view(-1, 16 * 16)
# add hidden layer, with relu activation function
x = self.dropout(F.relu(self.fc1(x)))
x = self.dropout(F.relu(self.fc2(x)))
x = F.log_softmax(self.fc3(x), dim=1)
return x
# specify loss function
criterion = nn.NLLLoss()
# specify optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=.003)
# number of epochs to train the model
n_epochs = 30 # suggest training between 20-50 epochs
model.train() # prep model for training
for epoch in range(n_epochs):
# monitor training loss
train_loss = 0.0
###################
# train the model #
###################
for data, target in trainloader:
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the loss
loss = criterion(output, target)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update running training loss
train_loss += loss.item()*data.size(0)
# print training statistics
# calculate average loss over an epoch
train_loss = train_loss/len(trainloader.dataset)
print('Epoch: {} \tTraining Loss: {:.6f}'.format(
epoch+1,
train_loss
))
i am getting value error as
ValueError: Expected input batch_size (24) to match target batch_size (8).
how to fix it . My batch size is 8 and input image size is (16*16).And i have 10 class classification here .
Your input images have 3 channels, therefore your input feature size is 16*16*3, not 16*16. Currently, you consider each channel as separate instances, leading to a classifier output - after x.view(-1, 16*16) flattening - of (24, 16*16). Clearly, the batch size doesn't match because it is supposed to be 8, not 8*3 = 24.
You could either:
Switch to a CNN to handle multi-channel inputs (here 3 channels).
Use a self.fc1 with 16*16*3 input features.
If the input is RGB, maybe even convert to 1-channel grayscale map.

Pytorch model 2D regression given an scalar input

I want to create a model to perform this regression:
My dataset looks like:
t,x,y
0.0,-,0.5759052335487023
0.01,-,-
0.02,1.1159124144549086,-
0.03,-,-
0.04,1.0054825084650338,0.4775267298487888
0.05,-,-
I'm having some troubles with loss, dataset load, batch_size, and Net structure (I add one single layer to simplify the problem)
Thats my code:
Net:
class Net(nn.Module):
'''Model to regress 2d time series values given scalar input.'''
def __init__(self):
super(Net, self).__init__()
#Layers
self.predict = nn.Linear(1, 2)
def forward(self, x):
x = self.predict(x)
return x
Dataset load
class TimeSeriesDataset(torch.utils.data.Dataset):
def __init__(self, csv_file):
#Load the dataset
#Load the csv file as a dataframe
df = pd.read_csv(csv_file, header=0, na_values='-')
#Store the inputs and outputs
self.x = df.values[:,:-2].astype('float32')
self.y = df.values[:,1:].astype('float32')
#Ensure target has the right shape
self.y = self.y.reshape((len(self.y),2))
def __len__(self):
#Return the number of rows in the dataset
return len(self.x)
def __getitem__(self, idx):
#Return a row at an index
return [self.x[idx], self.y[idx]]
Trainloader, loss, optimizer
dataset = TimeSeriesDataset('data.csv')
trainloader = torch.utils.data.DataLoader(
dataset, batch_size=32, shuffle=True, num_workers=2)
def lossFunc(outputs, labels):
# nn.MSELoss() #Mean Squared Error, works fine with regression problems and with small numbers (x-y)^2
return torch.mean((outputs-labels)**2)
net = Net()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
print(net)
Trainning:
for epoch in range(300):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# TODO get the data
# inputs, labels
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
#print("Inputs", inputs)
#print("labels", labels)
#print("outputs", outputs)
loss = lossFunc(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 20 == 19: # print every 20 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 20))
running_loss = 0.0
print('Finished Training')
Outputs looks this way:
tensor([[nan, nan],
[nan, nan],
[nan, nan],
...
And when I execute the 300 epochs error value doesn't change and prints nan
After the line loss = loss(outputs, labels), loss is now a tensor, not a function anymore. Python does not allow you to have distinct objects with identical names.
So after the first call, loss has become a tensor, and as the error says "tensors are not callable", so the second call fails

Subprocessing Data Loading in pytroch into Google Colab

I'm working on training a deep neural network using pytorch and I use DataLoader for preprocessing data and multi-processing purpose over dataset. I set num_workers attribute to positive number like 4 and my batch_size is 8. I train network on Google Colab Environment but when training keep on after few minutes, stop training and get error in reading .PNG files. I think it's memory error and I want to know what is relation between number of GPU and batch_size and num_workers to set up a reasonable relation between them specially in Google Colab .
I think you can follow this page:
https://colab.research.google.com/notebook#fileId=1jxUPzMsAkBboHMQtGyfv5M5c7hU8Ss2c&scrollTo=EM7EnBoyK8nR
It provide a guide of how to set settings of Google Colab.
I try it and feels really fast.
Hope you love it.
Following is the code it provides but I change a bit about install pytorch:
#!/usr/bin/env python
# encoding: utf-8
import sys
sys.version
# http://pytorch.org/
from os import path
from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag
platform = '{}{}-{}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag())
accelerator = 'cu80' if path.exists('/opt/bin/nvidia-smi') else 'cpu'
!pip install -q http://download.pytorch.org/whl/{accelerator}/torch-0.3.0.post4-{platform}-linux_x86_64.whl torchvision
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
input_size = 784 # The image size = 28 x 28 = 784
hidden_size = 500 # The number of nodes at the hidden layer
num_classes = 10 # The number of output classes. In this case, from 0 to 9
num_epochs = 5 # The number of times entire dataset is trained
batch_size = 100 # The size of input data took for one iteration
learning_rate = 1e-3 # The speed of convergence
train_dataset = dsets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init__() # Inherited from the parent class nn.Module
self.fc1 = nn.Linear(input_size, hidden_size) # 1st Full-Connected Layer: 784 (input data) -> 500 (hidden node)
self.relu = nn.ReLU() # Non-Linear ReLU Layer: max(0,x)
self.fc2 = nn.Linear(hidden_size, num_classes) # 2nd Full-Connected Layer: 500 (hidden node) -> 10 (output class)
def forward(self, x): # Forward pass: stacking each layer together
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
net = Net(input_size, hidden_size, num_classes)
use_cuda = True
if use_cuda and torch.cuda.is_available():
net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader): # Load a batch of images with its (index, data, class)
images = Variable(images.view(-1, 28*28)) # Convert torch tensor to Variable: change image from a vector of size 784 to a matrix of 28 x 28
labels = Variable(labels)
if use_cuda and torch.cuda.is_available():
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad() # Intialize the hidden weight to all zeros
outputs = net(images) # Forward pass: compute the output class given a image
loss = criterion(outputs, labels) # Compute the loss: difference between the output class and the pre-given label
loss.backward() # Backward pass: compute the weight
optimizer.step() # Optimizer: update the weights of hidden nodes
if (i+1) % 100 == 0: # Logging
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28*28))
if use_cuda and torch.cuda.is_available():
images = images.cuda()
labels = labels.cuda()
outputs = net(images)
_, predicted = torch.max(outputs.data, 1) # Choose the best class from the output: The class with the best score
total += labels.size(0) # Increment the total count
correct += (predicted == labels).sum() # Increment the correct count
print('Accuracy of the network on the 10K test images: %d %%' % (100 * correct / total))
torch.save(net.state_dict(), 'fnn_model.pkl')