Swift NOT operator (~) prints different values than when used - swift

Swift bitwise NOT operator (~) inverts all bits in a number.
The docs provide the example:
let initialBits: UInt8 = 0b00001111
let invertedBits = ~initialBits // equals 11110000
And I can confirm this by printing a String:
print(String(invertedBits, radix: 2)) // equals 11110000
Given this logic I would expect ~0 to equal 1 and ~1 to equal 0. However printing these as I did above print something unexpected:
print(String(~0b1, radix: 2)) // equals -10
print(String(~0b0, radix: 2)) // equals -1
When in use I see something different:
print(String(0b100 & ~0b111, radix: 2)) // equals 0 just as I would expect 100 & 000 to equal 000
but
print(String(~0b111, radix: 2)) // equals -1000
~0b111 seems to act as if it were 0b000 but it prints as -1000
What's going on here?

In the documentation provided example, initialBits has an explicit type. What is happening can be shown by the following code
let number = 0b1 // we don't specify a type, therefore it's inferred
print(type(of: number)) // Int
print(String(~number, radix: 2)) // -10 as you know
print(number.bitWidth) // 64 because integers have 64 bits
// now if we create a 64 bit number, we can see what happened
// prints -10 because this number is equivalent to the initial number
print(String(~0b0000000000000000000000000000000000000000000000000000000000000001, radix: 2))

Related

How to get the binary inverse of a number in Swift?

If we have a given number, say 9 (binary representation is 1001). How can we most efficiently get it's inverse 6 (binary representation is 0110)? i.e replacing 0 with 1 and 1 with 0.
I have written a code of order O(1) complexity? But can there be a better way? Does Swift provide an elegant way of handling this?
Note negate function ~9 results in -10. This is not what I am seeking.
func inverse(of givenNumber: Int) -> Int // eg. 9
{
let binaryRepresentation = String(givenNumber, radix: 2) // "1001"
let binaryRepresentationLength = binaryRepresentation.count // 4
let maxValueInLength = (1 << binaryRepresentationLength) - 1 // 15, i.e., 1111
let answer = givenNumber ^ maxValueInLength // 6, i.e., 0110
return answer
}
Edit 1: givenNumber > 0
For positive numbers you can use the following:
func intInverse<T: FixedWidthInteger>(of givenNumber: T) -> T
{
assert(!T.isSigned || givenNumber & (T(1) << (givenNumber.bitWidth - 1)) == 0)
let binaryRepresentationLength = givenNumber.bitWidth - givenNumber.leadingZeroBitCount
let maxValueInLength = givenNumber.leadingZeroBitCount > 0 ? (~(~T(0) << binaryRepresentationLength)) : ~0
let answer = givenNumber ^ maxValueInLength
return answer
}
Which is identical to your algorithm but doesn't require stringifying the number. It doesn't work for negative numbers, but then neither does your algorithm because your algorithm sticks a - on the front of the number.
Probably the easiest way to extend this to cover negative numbers is to invert all the bits to get the binaryRepresentationLength
EDIT
I changed the way the exclusive or mask is created because the old one crashed for unsigned values with the top bit set and for signed values with the second highest bit set.
The code becomes much simpler using the property binade of a floating-point value.
func inverse(of givenNumber: Int) -> Int // eg. 9
{
let maxValueInLength = Int((Double(givenNumber).binade * 2) - 1) // 15, i.e., 1111
let answer = givenNumber ^ maxValueInLength // 6, i.e., 0110
return answer
}

MongoDB findOne() return 404 "Not found" in Postman but in commend line it comes out [duplicate]

How do I convert a string to an integer in JavaScript?
The simplest way would be to use the native Number function:
var x = Number("1000")
If that doesn't work for you, then there are the parseInt, unary plus, parseFloat with floor, and Math.round methods.
parseInt()
var x = parseInt("1000", 10); // You want to use radix 10
// So you get a decimal number even with a leading 0 and an old browser ([IE8, Firefox 20, Chrome 22 and older][1])
Unary plus
If your string is already in the form of an integer:
var x = +"1000";
floor()
If your string is or might be a float and you want an integer:
var x = Math.floor("1000.01"); // floor() automatically converts string to number
Or, if you're going to be using Math.floor several times:
var floor = Math.floor;
var x = floor("1000.01");
parseFloat()
If you're the type who forgets to put the radix in when you call parseInt, you can use parseFloat and round it however you like. Here I use floor.
var floor = Math.floor;
var x = floor(parseFloat("1000.01"));
round()
Interestingly, Math.round (like Math.floor) will do a string to number conversion, so if you want the number rounded (or if you have an integer in the string), this is a great way, maybe my favorite:
var round = Math.round;
var x = round("1000"); // Equivalent to round("1000", 0)
Try parseInt function:
var number = parseInt("10");
But there is a problem. If you try to convert "010" using parseInt function, it detects as octal number, and will return number 8. So, you need to specify a radix (from 2 to 36). In this case base 10.
parseInt(string, radix)
Example:
var result = parseInt("010", 10) == 10; // Returns true
var result = parseInt("010") == 10; // Returns false
Note that parseInt ignores bad data after parsing anything valid.
This guid will parse as 51:
var result = parseInt('51e3daf6-b521-446a-9f5b-a1bb4d8bac36', 10) == 51; // Returns true
There are two main ways to convert a string to a number in JavaScript. One way is to parse it and the other way is to change its type to a Number. All of the tricks in the other answers (e.g., unary plus) involve implicitly coercing the type of the string to a number. You can also do the same thing explicitly with the Number function.
Parsing
var parsed = parseInt("97", 10);
parseInt and parseFloat are the two functions used for parsing strings to numbers. Parsing will stop silently if it hits a character it doesn't recognise, which can be useful for parsing strings like "92px", but it's also somewhat dangerous, since it won't give you any kind of error on bad input, instead you'll get back NaN unless the string starts with a number. Whitespace at the beginning of the string is ignored. Here's an example of it doing something different to what you want, and giving no indication that anything went wrong:
var widgetsSold = parseInt("97,800", 10); // widgetsSold is now 97
It's good practice to always specify the radix as the second argument. In older browsers, if the string started with a 0, it would be interpreted as octal if the radix wasn't specified which took a lot of people by surprise. The behaviour for hexadecimal is triggered by having the string start with 0x if no radix is specified, e.g., 0xff. The standard actually changed with ECMAScript 5, so modern browsers no longer trigger octal when there's a leading 0 if no radix has been specified. parseInt understands radixes up to base 36, in which case both upper and lower case letters are treated as equivalent.
Changing the Type of a String to a Number
All of the other tricks mentioned above that don't use parseInt, involve implicitly coercing the string into a number. I prefer to do this explicitly,
var cast = Number("97");
This has different behavior to the parse methods (although it still ignores whitespace). It's more strict: if it doesn't understand the whole of the string than it returns NaN, so you can't use it for strings like 97px. Since you want a primitive number rather than a Number wrapper object, make sure you don't put new in front of the Number function.
Obviously, converting to a Number gives you a value that might be a float rather than an integer, so if you want an integer, you need to modify it. There are a few ways of doing this:
var rounded = Math.floor(Number("97.654")); // other options are Math.ceil, Math.round
var fixed = Number("97.654").toFixed(0); // rounded rather than truncated
var bitwised = Number("97.654")|0; // do not use for large numbers
Any bitwise operator (here I've done a bitwise or, but you could also do double negation as in an earlier answer or a bit shift) will convert the value to a 32 bit integer, and most of them will convert to a signed integer. Note that this will not do want you want for large integers. If the integer cannot be represented in 32 bits, it will wrap.
~~"3000000000.654" === -1294967296
// This is the same as
Number("3000000000.654")|0
"3000000000.654" >>> 0 === 3000000000 // unsigned right shift gives you an extra bit
"300000000000.654" >>> 0 === 3647256576 // but still fails with larger numbers
To work correctly with larger numbers, you should use the rounding methods
Math.floor("3000000000.654") === 3000000000
// This is the same as
Math.floor(Number("3000000000.654"))
Bear in mind that coercion understands exponential notation and Infinity, so 2e2 is 200 rather than NaN, while the parse methods don't.
Custom
It's unlikely that either of these methods do exactly what you want. For example, usually I would want an error thrown if parsing fails, and I don't need support for Infinity, exponentials or leading whitespace. Depending on your use case, sometimes it makes sense to write a custom conversion function.
Always check that the output of Number or one of the parse methods is the sort of number you expect. You will almost certainly want to use isNaN to make sure the number is not NaN (usually the only way you find out that the parse failed).
ParseInt() and + are different
parseInt("10.3456") // returns 10
+"10.3456" // returns 10.3456
Fastest
var x = "1000"*1;
Test
Here is little comparison of speed (macOS only)... :)
For Chrome, 'plus' and 'mul' are fastest (>700,000,00 op/sec), 'Math.floor' is slowest. For Firefox, 'plus' is slowest (!) 'mul' is fastest (>900,000,000 op/sec). In Safari 'parseInt' is fastest, 'number' is slowest (but results are quite similar, >13,000,000 <31,000,000). So Safari for cast string to int is more than 10x slower than other browsers. So the winner is 'mul' :)
You can run it on your browser by this link
https://jsperf.com/js-cast-str-to-number/1
I also tested var x = ~~"1000";. On Chrome and Safari, it is a little bit slower than var x = "1000"*1 (<1%), and on Firefox it is a little bit faster (<1%).
I use this way of converting string to number:
var str = "25"; // String
var number = str*1; // Number
So, when multiplying by 1, the value does not change, but JavaScript automatically returns a number.
But as it is shown below, this should be used if you are sure that the str is a number (or can be represented as a number), otherwise it will return NaN - not a number.
You can create simple function to use, e.g.,
function toNumber(str) {
return str*1;
}
Try parseInt.
var number = parseInt("10", 10); //number will have value of 10.
I love this trick:
~~"2.123"; //2
~~"5"; //5
The double bitwise negative drops off anything after the decimal point AND converts it to a number format. I've been told it's slightly faster than calling functions and whatnot, but I'm not entirely convinced.
Another method I just saw here (a question about the JavaScript >>> operator, which is a zero-fill right shift) which shows that shifting a number by 0 with this operator converts the number to a uint32 which is nice if you also want it unsigned. Again, this converts to an unsigned integer, which can lead to strange behaviors if you use a signed number.
"-2.123" >>> 0; // 4294967294
"2.123" >>> 0; // 2
"-5" >>> 0; // 4294967291
"5" >>> 0; // 5
In JavaScript, you can do the following:
ParseInt
parseInt("10.5") // Returns 10
Multiplying with 1
var s = "10";
s = s*1; // Returns 10
Using the unary operator (+)
var s = "10";
s = +s; // Returns 10
Using a bitwise operator
(Note: It starts to break after 2140000000. Example: ~~"2150000000" = -2144967296)
var s = "10.5";
s = ~~s; // Returns 10
Using Math.floor() or Math.ceil()
var s = "10";
s = Math.floor(s) || Math.ceil(s); // Returns 10
Please see the below example. It will help answer your question.
Example Result
parseInt("4") 4
parseInt("5aaa") 5
parseInt("4.33333") 4
parseInt("aaa"); NaN (means "Not a Number")
By using parseint function, it will only give op of integer present and not the string.
Beware if you use parseInt to convert a float in scientific notation!
For example:
parseInt("5.6e-14")
will result in
5
instead of
0
Also as a side note: MooTools has the function toInt() which is used on any native string (or float (or integer)).
"2".toInt() // 2
"2px".toInt() // 2
2.toInt() // 2
We can use +(stringOfNumber) instead of using parseInt(stringOfNumber).
Example: +("21") returns int of 21, like the parseInt("21").
We can use this unary "+" operator for parsing float too...
To convert a String into Integer, I recommend using parseFloat and not parseInt. Here's why:
Using parseFloat:
parseFloat('2.34cms') //Output: 2.34
parseFloat('12.5') //Output: 12.5
parseFloat('012.3') //Output: 12.3
Using parseInt:
parseInt('2.34cms') //Output: 2
parseInt('12.5') //Output: 12
parseInt('012.3') //Output: 12
So if you have noticed parseInt discards the values after the decimals, whereas parseFloat lets you work with floating point numbers and hence more suitable if you want to retain the values after decimals. Use parseInt if and only if you are sure that you want the integer value.
There are many ways in JavaScript to convert a string to a number value... All are simple and handy. Choose the way which one works for you:
var num = Number("999.5"); //999.5
var num = parseInt("999.5", 10); //999
var num = parseFloat("999.5"); //999.5
var num = +"999.5"; //999.5
Also, any Math operation converts them to number, for example...
var num = "999.5" / 1; //999.5
var num = "999.5" * 1; //999.5
var num = "999.5" - 1 + 1; //999.5
var num = "999.5" - 0; //999.5
var num = Math.floor("999.5"); //999
var num = ~~"999.5"; //999
My prefer way is using + sign, which is the elegant way to convert a string to number in JavaScript.
Try str - 0 to convert string to number.
> str = '0'
> str - 0
0
> str = '123'
> str - 0
123
> str = '-12'
> str - 0
-12
> str = 'asdf'
> str - 0
NaN
> str = '12.34'
> str - 0
12.34
Here are two links to compare the performance of several ways to convert string to int
https://jsperf.com/number-vs-parseint-vs-plus
http://phrogz.net/js/string_to_number.html
Here is the easiest solution
let myNumber = "123" | 0;
More easy solution
let myNumber = +"123";
In my opinion, no answer covers all edge cases as parsing a float should result in an error.
function parseInteger(value) {
if(value === '') return NaN;
const number = Number(value);
return Number.isInteger(number) ? number : NaN;
}
parseInteger("4") // 4
parseInteger("5aaa") // NaN
parseInteger("4.33333") // NaN
parseInteger("aaa"); // NaN
The easiest way would be to use + like this
const strTen = "10"
const numTen = +strTen // string to number conversion
console.log(typeof strTen) // string
console.log(typeof numTen) // number
I actually needed to "save" a string as an integer, for a binding between C and JavaScript, so I convert the string into an integer value:
/*
Examples:
int2str( str2int("test") ) == "test" // true
int2str( str2int("t€st") ) // "t¬st", because "€".charCodeAt(0) is 8364, will be AND'ed with 0xff
Limitations:
maximum 4 characters, so it fits into an integer
*/
function str2int(the_str) {
var ret = 0;
var len = the_str.length;
if (len >= 1) ret += (the_str.charCodeAt(0) & 0xff) << 0;
if (len >= 2) ret += (the_str.charCodeAt(1) & 0xff) << 8;
if (len >= 3) ret += (the_str.charCodeAt(2) & 0xff) << 16;
if (len >= 4) ret += (the_str.charCodeAt(3) & 0xff) << 24;
return ret;
}
function int2str(the_int) {
var tmp = [
(the_int & 0x000000ff) >> 0,
(the_int & 0x0000ff00) >> 8,
(the_int & 0x00ff0000) >> 16,
(the_int & 0xff000000) >> 24
];
var ret = "";
for (var i=0; i<4; i++) {
if (tmp[i] == 0)
break;
ret += String.fromCharCode(tmp[i]);
}
return ret;
}
String to Number in JavaScript:
Unary + (most recommended)
+numStr is easy to use and has better performance compared with others
Supports both integers and decimals
console.log(+'123.45') // => 123.45
Some other options:
Parsing Strings:
parseInt(numStr) for integers
parseFloat(numStr) for both integers and decimals
console.log(parseInt('123.456')) // => 123
console.log(parseFloat('123')) // => 123
JavaScript Functions
Math functions like round(numStr), floor(numStr), ceil(numStr) for integers
Number(numStr) for both integers and decimals
console.log(Math.floor('123')) // => 123
console.log(Math.round('123.456')) // => 123
console.log(Math.ceil('123.454')) // => 124
console.log(Number('123.123')) // => 123.123
Unary Operators
All basic unary operators, +numStr, numStr-0, 1*numStr, numStr*1, and numStr/1
All support both integers and decimals
Be cautious about numStr+0. It returns a string.
console.log(+'123') // => 123
console.log('002'-0) // => 2
console.log(1*'5') // => 5
console.log('7.7'*1) // => 7.7
console.log(3.3/1) // =>3.3
console.log('123.123'+0, typeof ('123.123' + 0)) // => 123.1230 string
Bitwise Operators
Two tilde ~~numStr or left shift 0, numStr<<0
Supports only integers, but not decimals
console.log(~~'123') // => 123
console.log('0123'<<0) // => 123
console.log(~~'123.123') // => 123
console.log('123.123'<<0) // => 123
// Parsing
console.log(parseInt('123.456')) // => 123
console.log(parseFloat('123')) // => 123
// Function
console.log(Math.floor('123')) // => 123
console.log(Math.round('123.456')) // => 123
console.log(Math.ceil('123.454')) // => 124
console.log(Number('123.123')) // => 123.123
// Unary
console.log(+'123') // => 123
console.log('002'-0) // => 2
console.log(1*'5') // => 5
console.log('7.7'*1) // => 7.7
console.log(3.3/1) // => 3.3
console.log('123.123'+0, typeof ('123.123'+0)) // => 123.1230 string
// Bitwise
console.log(~~'123') // => 123
console.log('0123'<<0) // => 123
console.log(~~'123.123') // => 123
console.log('123.123'<<0) // => 123
function parseIntSmarter(str) {
// ParseInt is bad because it returns 22 for "22thisendsintext"
// Number() is returns NaN if it ends in non-numbers, but it returns 0 for empty or whitespace strings.
return isNaN(Number(str)) ? NaN : parseInt(str, 10);
}
You can use plus.
For example:
var personAge = '24';
var personAge1 = (+personAge)
then you can see the new variable's type bytypeof personAge1 ; which is number.
Summing the multiplication of digits with their respective power of ten:
i.e: 123 = 100+20+3 = 1100 + 2+10 + 31 = 1*(10^2) + 2*(10^1) + 3*(10^0)
function atoi(array) {
// Use exp as (length - i), other option would be
// to reverse the array.
// Multiply a[i] * 10^(exp) and sum
let sum = 0;
for (let i = 0; i < array.length; i++) {
let exp = array.length - (i+1);
let value = array[i] * Math.pow(10, exp);
sum += value;
}
return sum;
}
The safest way to ensure you get a valid integer:
let integer = (parseInt(value, 10) || 0);
Examples:
// Example 1 - Invalid value:
let value = null;
let integer = (parseInt(value, 10) || 0);
// => integer = 0
// Example 2 - Valid value:
let value = "1230.42";
let integer = (parseInt(value, 10) || 0);
// => integer = 1230
// Example 3 - Invalid value:
let value = () => { return 412 };
let integer = (parseInt(value, 10) || 0);
// => integer = 0
Another option is to double XOR the value with itself:
var i = 12.34;
console.log('i = ' + i);
console.log('i ⊕ i ⊕ i = ' + (i ^ i ^ i));
This will output:
i = 12.34
i ⊕ i ⊕ i = 12
I only added one plus(+) before string and that was solution!
+"052254" // 52254
Number()
Number(" 200.12 ") // Returns 200.12
Number("200.12") // Returns 200.12
Number("200") // Returns 200
parseInt()
parseInt(" 200.12 ") // Return 200
parseInt("200.12") // Return 200
parseInt("200") // Return 200
parseInt("Text information") // Returns NaN
parseFloat()
It will return the first number
parseFloat("200 400") // Returns 200
parseFloat("200") // Returns 200
parseFloat("Text information") // Returns NaN
parseFloat("200.10") // Return 200.10
Math.floor()
Round a number to the nearest integer
Math.floor(" 200.12 ") // Return 200
Math.floor("200.12") // Return 200
Math.floor("200") // Return 200
function doSth(){
var a = document.getElementById('input').value;
document.getElementById('number').innerHTML = toNumber(a) + 1;
}
function toNumber(str){
return +str;
}
<input id="input" type="text">
<input onclick="doSth()" type="submit">
<span id="number"></span>
This (probably) isn't the best solution for parsing an integer, but if you need to "extract" one, for example:
"1a2b3c" === 123
"198some text2hello world!30" === 198230
// ...
this would work (only for integers):
var str = '3a9b0c3d2e9f8g'
function extractInteger(str) {
var result = 0;
var factor = 1
for (var i = str.length; i > 0; i--) {
if (!isNaN(str[i - 1])) {
result += parseInt(str[i - 1]) * factor
factor *= 10
}
}
return result
}
console.log(extractInteger(str))
Of course, this would also work for parsing an integer, but would be slower than other methods.
You could also parse integers with this method and return NaN if the string isn't a number, but I don't see why you'd want to since this relies on parseInt internally and parseInt is probably faster.
var str = '3a9b0c3d2e9f8g'
function extractInteger(str) {
var result = 0;
var factor = 1
for (var i = str.length; i > 0; i--) {
if (isNaN(str[i - 1])) return NaN
result += parseInt(str[i - 1]) * factor
factor *= 10
}
return result
}
console.log(extractInteger(str))

Receiving NaN as an output when using the pow() function to generate a Decimal

I've been at this for hours so forgive me if I'm missing something obvious.
I'm using the pow(_ x: Decimal, _ y: Int) -> Decimal function to help generate a monthly payment amount using a basic formula. I have this function linked to the infix operator *** but I've tried using it just by typing out the function and have the same problem.
Xcode was yelling at me yesterday for having too long of a formula, so I broke it up into a couple constants and incorporated that into the overall formula I need.
Code:
precedencegroup PowerPrecedence { higherThan: MultiplicationPrecedence }
infix operator *** : PowerPrecedence
func *** (radix: Decimal, power: Int) -> Decimal {
return (pow((radix), (power)))
}
func calculateMonthlyPayment() {
let rateAndMonths: Decimal = ((0.0199 / 12.0) + (0.0199 / 12.0))
let rateTwo: Decimal = ((1.0+(0.0199 / 12.0)))
loan12YearsPayment[0] = ((rateAndMonths / rateTwo) *** 144 - 1.0) * ((values.installedSystemCost + loanFees12YearsCombined[0]) * 0.7)
When I print to console or run this in the simulator, the output is NaN. I know the pow function itself is working properly because I've tried it with random integers.
Kindly find my point of view for this Apple function implementation, Note the following examples:
pow(1 as Decimal, -2) // 1; (1 ^ Any number) = 1
pow(10 as Decimal, -2) // NAN
pow(0.1 as Decimal, -2) // 100
pow(0.01 as Decimal, -2) // 10000
pow(1.5 as Decimal, -2) // NAN
pow(0.5 as Decimal, -2) // NAN
It seems like, pow with decimal don't consider any floating numbers except for 10 basis. So It deals with:
0.1 ^ -2 == (1/10) ^ -2 == 10 ^ 2 // It calculates it appropriately, It's 10 basis 10, 100, 1000, ...
1.5 ^ -2 == (3/2) ^ -2 // (3/2) is a floating number ,so deal with it as Double not decimal, It returns NAN.
0.5 ^ -2 == (1/2) ^ -2 // (2) isn't 10 basis, So It will be dealt as (1/2) as It is, It's a floating number also. It returns NAN.

Why does swift conversion work for floating point division?

Like in many languages, Swift's division operator defaults to integer division, so:
let n = 1 / 2
print(n) // 0
If you want floating point division, you have to do
let n1 = 1.0 / 2
let n2 = 1 / 2.0
let n3 = Double(1) / 2
let n4 = 1 / Double(2)
print(n1) // 0.5
print(n2) // 0.5
print(n3) // 0.5
print(n4) // 0.5
Again, like most other languages, you can't cast the whole operation:
let n5 = Double(1 / 2)
print(n5) // 0.0
Which happens because swift performs the integer division of 1 and 2 (1 / 2) and gets 0, which it then tries to cast to a Double, effectively giving you 0.0.
I am curious as to why the following works:
let n6 = (1 / 2) as Double
print(n6) // 0.5
I feel like this should produce the same results as Double(1 / 2). Why doesn't it?
1 and 2 are literals. They have no type unless you give them a type from context.
let n6 = (1 / 2) as Double
is essentially the same as
let n6: Double = 1 / 2
that means, you tell the compiler that the result is a Double. That means the compiler searches for operator / with a Double result, and that means it will find the operator / on two Double operands and therefore considers both literals as of type Double.
On the other hand,
let n5 = Double(1 / 2)
is a cast (or better said, initialization of a Double). That means the expression 1 / 2 gets evaluated first and then converted to Double.

Find most significant bit in Swift

I need to find the value (or position) of the most significant bit (MSB) of an integer in Swift.
Eg:
Input number: 9
Input as binary: 1001
MS value as binary: 1000 -> (which is 8 in decimal)
MS position as decimal: 3 (because 1<<3 == 1000)
Many processors (Intel, AMD, ARM) have instructions for this. In c, these are exposed. Are these instructions similarly available in Swift through a library function, or would I need to implement some bit twiddling?
The value is more useful in my case.
If a position is returned, then the value can be easily derived by a single shift.
Conversely, computing position from value is not so easy unless a fast Hamming Weight / pop count function is available.
You can use the flsl() function ("find last set bit, long"):
let x = 9
let p = flsl(x)
print(p) // 4
The result is 4 because flsl() and the related functions number the bits starting at 1, the least significant bit.
On Intel platforms you can use the _bit_scan_reverse intrinsic,
in my test in a macOS application this translated to a BSR
instruction.
import _Builtin_intrinsics.intel
let x: Int32 = 9
let p = _bit_scan_reverse(x)
print(p) // 3
You can use the the properties leadingZeroBitCount and trailingZeroBitCount to find the Most Significant Bit and Least Significant Bit.
For example,
let i: Int = 95
let lsb = i.trailingZeroBitCount
let msb = Int.bitWidth - 1 - i.leadingZeroBitCount
print("i: \(i) = \(String(i, radix: 2))") // i: 95 = 1011111
print("lsb: \(lsb) = \(String(1 << lsb, radix: 2))") // lsb: 0 = 1
print("msb: \(msb) = \(String(1 << msb, radix: 2))") // msb: 6 = 1000000
If you look at the disassembly(ARM Mac) in LLDB for the Least Significant Bit code, it uses a single instruction, clz, to count the zeroed bits. (ARM Reference)
** 15 let lsb = i.trailingZeroBitCount
0x100ed947c <+188>: rbit x9, x8
0x100ed9480 <+192>: clz x9, x9
0x100ed9484 <+196>: mov x10, x9
0x100ed9488 <+200>: str x10, [sp, #0x2d8]