MNIST dataset boosting - classification

I am trying to apply Gradient Boosting to the MNIST dataset. This is my code:
library(dplyr)
library(caret)
mnist <- snedata::download_mnist()
mnist_num <- as.data.frame(lapply(mnist[1:10000,], as.numeric)) %>%
mutate(id = row_number())
mnist_num <- mnist_num[,sapply(mnist_num, function(x){max(x) - min(x) > 0})]
mnist_train <- sample_frac(mnist_num, .70)
mnist_test <- anti_join(mnist_num, mnist_train, by = 'id')
set.seed(5000)
library(gbm)
boost_mnist<-gbm(Label~ .,data=mnist_train, distribution="bernoulli", n.trees=70,
interaction.depth=4, shrinkage=0.3)
It shows the following error:
"Error in gbm.fit(x = x, y = y, offset = offset, distribution = distribution, : Bernoulli requires the response to be in {0,1}"
What is wrong here? Can anyone show me the code to correctly do it?

The error
Error in gbm.fit(x = x, y = y, offset = offset, distribution = distribution, : Bernoulli requires the response to be in {0,1}
is due to the choice of the distribution, you should choose the multinomial instead of the bernoulli, because the bernoulli distribution only works with dichotomous response and the mnist label goes from 1 to 10.

Related

How to run an exponential decay mixed model?

I am not familiar with nonlinear regression and would appreciate some help with running an exponential decay model in R. Please see the graph for how the data looks like. My hunch is that an exponential model might be a good choice. I have one fixed effect and one random effect. y ~ x + (1|random factor). How to get the starting values for the exponential model (please assume that I know nothing about nonlinear regression) in R? How do I subsequently run a nonlinear model with these starting values? Could anyone please help me with the logic as well as the R code?
As I am not familiar with nonlinear regression, I haven't been able to attempt it in R.
raw plot
The correct syntax will depend on your experimental design and model but I hope to give you a general idea on how to get started.
We begin by generating some data that should match the type of data you are working with. You had mentioned a fixed factor and a random one. Here, the fixed factor is represented by the variable treatment and the random factor is represented by the variable grouping_factor.
library(nlraa)
library(nlme)
library(ggplot2)
## Setting this seed should allow you to reach the same result as me
set.seed(3232333)
example_data <- expand.grid(treatment = c("A", "B"),
grouping_factor = c('1', '2', '3'),
replication = c(1, 2, 3),
xvar = 1:15)
The next step is to create some "observations". Here, we use an exponential function y=a∗exp(c∗x) and some random noise to create some data. Also, we add a constant to treatment A just to create some treatment differences.
example_data$y <- ave(example_data$xvar, example_data[, c('treatment', 'replication', 'grouping_factor')],
FUN = function(x) {expf(x = x,
a = 10,
c = -0.3) + rnorm(1, 0, 0.6)})
example_data$y[example_data$treatment == 'A'] <- example_data$y[example_data$treatment == 'A'] + 0.8
All right, now we start fitting the model.
## Create a grouped data frame
exampleG <- groupedData(y ~ xvar|grouping_factor, data = example_data)
## Fit a separate model to each groupped level
fitL <- nlsList(y ~ SSexpf(xvar, a, c), data = exampleG)
## Grab the coefficients of the general model
fxf <- fixed.effects(fit1)
## Add treatment as a fixed effect. Also, use the coeffients from the previous
## regression model as starting values.
fit2 <- update(fit1, fixed = a + c ~ treatment,
start = c(fxf[1], 0,
fxf[2], 0))
Looking at the model output, it will give you information like the following:
Nonlinear mixed-effects model fit by maximum likelihood
Model: y ~ SSexpf(xvar, a, c)
Data: exampleG
AIC BIC logLik
475.8632 504.6506 -229.9316
Random effects:
Formula: list(a ~ 1, c ~ 1)
Level: grouping_factor
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
a.(Intercept) 3.254827e-04 a.(In)
c.(Intercept) 1.248580e-06 0
Residual 5.670317e-01
Fixed effects: a + c ~ treatment
Value Std.Error DF t-value p-value
a.(Intercept) 9.634383 0.2189967 264 43.99329 0.0000
a.treatmentB 0.353342 0.3621573 264 0.97566 0.3301
c.(Intercept) -0.204848 0.0060642 264 -33.77976 0.0000
c.treatmentB -0.092138 0.0120463 264 -7.64867 0.0000
Correlation:
a.(In) a.trtB c.(In)
a.treatmentB -0.605
c.(Intercept) -0.785 0.475
c.treatmentB 0.395 -0.792 -0.503
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.93208903 -0.34340037 0.04767133 0.78924247 1.95516431
Number of Observations: 270
Number of Groups: 3
Then, if you wanted to visualize the model fit, you could do the following.
## Here we store the model predictions for visualization purposes
predictionsDf <- cbind(example_data,
predict_nlme(fit2, interval = 'conf'))
## Here we make a graph to check it out
ggplot()+
geom_ribbon(data = predictionsDf,
aes( x = xvar , ymin = Q2.5, ymax = Q97.5, fill = treatment),
color = NA, alpha = 0.3)+
geom_point(data = example_data, aes( x = xvar, y = y, col = treatment))+
geom_line(data = predictionsDf, aes(x = xvar, y = Estimate, col = treatment), size = 1.1)
This shows the model fit.

I want to use Numpy to simulate the inference process of a quantized MobileNet V2 network, but the outcome is different with pytorch realized one

Python version: 3.8
Pytorch version: 1.9.0+cpu
Platform: Anaconda Spyder5.0
To reproduce this problem, just copy every code below to a single file.
The ILSVRC2012_val_00000293.jpg file used in this code is shown below, you also need to download it and then change its destination in the code.
Some background of this problem:
I am now working on a project that aims to develop a hardware accelerator to complete the inference process of the MobileNet V2 network. I used pretrained quantized Pytorch model to simulate the outcome, and the result comes out very well.
In order to use hardware to complete this task, I wish to know every inputs and outputs as well as intermidiate variables during runing this piece of pytorch code. I used a package named torchextractor to fetch the outcomes of first layer, which in this case, is a 3*3 convolution layer.
import numpy as np
import torchvision
import torch
from torchvision import transforms, datasets
from PIL import Image
from torchvision import transforms
import torchextractor as tx
import math
#########################################################################################
##### Processing of input image
#########################################################################################
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,])
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
#image file destination
filename = "D:\Project_UM\MobileNet_VC709\MobileNet_pytorch\ILSVRC2012_val_00000293.jpg"
input_image = Image.open(filename)
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
#########################################################################################
#########################################################################################
#########################################################################################
#----First verify that the torchextractor class should not influent the inference outcome
# ofmp of layer1 before putting into torchextractor
a,b,c = quantize_tensor(input_batch)# to quantize the input tensor and return an int8 tensor, scale and zero point
input_qa = torch.quantize_per_tensor(torch.tensor(input_batch.clone().detach()), b, c, torch.quint8)# Using quantize_per_tensor method of torch
# Load a quantized mobilenet_v2 model
model_quantized = torchvision.models.quantization.mobilenet_v2(pretrained=True, quantize=True)
model_quantized.eval()
with torch.no_grad():
output = model_quantized.features[0][0](input_qa)# Ofmp of layer1, datatype : quantized_tensor
# print("FM of layer1 before tx_extractor:\n",output.int_repr())# Ofmp of layer1, datatype : int8 tensor
output1_clone = output.int_repr().detach().numpy()# Clone ofmp of layer1, datatype : ndarray
#########################################################################################
#########################################################################################
#########################################################################################
# ofmp of layer1 after adding torchextractor
model_quantized_ex = tx.Extractor(model_quantized, ["features.0.0"])#Capture of the module inside first layer
model_output, features = model_quantized_ex(input_batch)# Forward propagation
# feature_shapes = {name: f.shape for name, f in features.items()}
# print(features['features.0.0']) # Ofmp of layer1, datatype : quantized_tensor
out1_clone = features['features.0.0'].int_repr().numpy() # Clone ofmp of layer1, datatype : ndarray
if(out1_clone.all() == output1_clone.all()):
print('Model with torchextractor attached output the same value as the original model')
else:
print('Torchextractor method influence the outcome')
Here I define a numpy quantization scheme based on the quantization scheme proposed by
Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference
# Convert a normal regular tensor to a quantized tensor with scale and zero_point
def quantize_tensor(x, num_bits=8):# to quantize the input tensor and return an int8 tensor, scale and zero point
qmin = 0.
qmax = 2.**num_bits - 1.
min_val, max_val = x.min(), x.max()
scale = (max_val - min_val) / (qmax - qmin)
initial_zero_point = qmin - min_val / scale
zero_point = 0
if initial_zero_point < qmin:
zero_point = qmin
elif initial_zero_point > qmax:
zero_point = qmax
else:
zero_point = initial_zero_point
# print(zero_point)
zero_point = int(zero_point)
q_x = zero_point + x / scale
q_x.clamp_(qmin, qmax).round_()
q_x = q_x.round().byte()
return q_x, scale, zero_point
#%%
# #############################################################################################
# --------- Simulate the inference process of layer0: conv33 using numpy
# #############################################################################################
# get the input_batch quantized buffer data
input_scale = b.item()
input_zero = c
input_quantized = a[0].detach().numpy()
# get the layer0 output scale and zero_point
output_scale = model_quantized.features[0][0].state_dict()['scale'].item()
output_zero = model_quantized.features[0][0].state_dict()['zero_point'].item()
# get the quantized weight with scale and zero_point
weight_scale = model_quantized.features[0][0].state_dict()["weight"].q_scale()
weight_zero = model_quantized.features[0][0].state_dict()["weight"].q_zero_point()
weight_quantized = model_quantized.features[0][0].state_dict()["weight"].int_repr().numpy()
# print(weight_quantized)
# print(weight_quantized.shape)
# bias_quantized,bias_scale,bias_zero= quantize_tensor(model_quantized.features[0][0].state_dict()["bias"])# to quantize the input tensor and return an int8 tensor, scale and zero point
# print(bias_quantized.shape)
bias = model_quantized.features[0][0].state_dict()["bias"].detach().numpy()
# print(input_quantized)
print(type(input_scale))
print(type(output_scale))
print(type(weight_scale))
Then I write a quantized 2D convolution using numpy, hope to figure out every details in pytorch data flow during the inference.
#%% numpy simulated layer0 convolution function define
def conv_cal(input_quantized, weight_quantized, kernel_size, stride, out_i, out_j, out_k):
weight = weight_quantized[out_i]
input = np.zeros((input_quantized.shape[0], kernel_size, kernel_size))
for i in range(weight.shape[0]):
for j in range(weight.shape[1]):
for k in range(weight.shape[2]):
input[i][j][k] = input_quantized[i][stride*out_j+j][stride*out_k+k]
# print(np.dot(weight,input))
# print(input,"\n")
# print(weight)
return np.multiply(weight,input).sum()
def QuantizedConv2D(input_scale, input_zero, input_quantized, output_scale, output_zero, weight_scale, weight_zero, weight_quantized, bias, kernel_size, stride, padding, ofm_size):
output = np.zeros((weight_quantized.shape[0],ofm_size,ofm_size))
input_quantized_padding = np.full((input_quantized.shape[0],input_quantized.shape[1]+2*padding,input_quantized.shape[2]+2*padding),0)
zero_temp = np.full(input_quantized.shape,input_zero)
input_quantized = input_quantized - zero_temp
for i in range(input_quantized.shape[0]):
for j in range(padding,padding + input_quantized.shape[1]):
for k in range(padding,padding + input_quantized.shape[2]):
input_quantized_padding[i][j][k] = input_quantized[i][j-padding][k-padding]
zero_temp = np.full(weight_quantized.shape, weight_zero)
weight_quantized = weight_quantized - zero_temp
for i in range(output.shape[0]):
for j in range(output.shape[1]):
for k in range(output.shape[2]):
# output[i][j][k] = (weight_scale*input_scale)*conv_cal(input_quantized_padding, weight_quantized, kernel_size, stride, i, j, k) + bias[i] #floating_output
output[i][j][k] = weight_scale*input_scale/output_scale*conv_cal(input_quantized_padding, weight_quantized, kernel_size, stride, i, j, k) + bias[i]/output_scale + output_zero
output[i][j][k] = round(output[i][j][k])
# int_output
return output
Here I input the same image, weight, and bias together with their zero_point and scale, then compare this "numpy simulated" result to the PyTorch calculated one.
quantized_model_out1_int8 = np.squeeze(features['features.0.0'].int_repr().numpy())
print(quantized_model_out1_int8.shape)
print(quantized_model_out1_int8)
out1_np = QuantizedConv2D(input_scale, input_zero, input_quantized, output_scale, output_zero, weight_scale, weight_zero, weight_quantized, bias, 3, 2, 1, 112)
np.save("out1_np.npy",out1_np)
for i in range(quantized_model_out1_int8.shape[0]):
for j in range(quantized_model_out1_int8.shape[1]):
for k in range(quantized_model_out1_int8.shape[2]):
if(out1_np[i][j][k] < 0):
out1_np[i][j][k] = 0
print(out1_np)
flag = np.zeros(quantized_model_out1_int8.shape)
for i in range(quantized_model_out1_int8.shape[0]):
for j in range(quantized_model_out1_int8.shape[1]):
for k in range(quantized_model_out1_int8.shape[2]):
if(quantized_model_out1_int8[i][j][k] == out1_np[i][j][k]):
flag[i][j][k] = 1
out1_np[i][j][k] = 0
quantized_model_out1_int8[i][j][k] = 0
# Compare the simulated result to extractor fetched result, gain the total hit rate
print(flag.sum()/(112*112*32)*100,'%')
If the "numpy simulated" results are the same as the extracted one, call it a hit. Print the total hit rate, it shows that numpy gets 92% of the values right. Now the problem is, I have no idea why the rest 8% of values come out wrong.
Comparison of two outcomes:
The picture below shows the different values between Numpy one and PyTorch one, the sample channel is index[1]. The left upper corner is Numpy one, and the upright corner is PyTorch one, I have set all values that are the same between them to 0, as you can see, most of the values just have a difference of 1(This can be view as the error brought by the precision loss of fixed point arithmetics), but some have large differences, e.g. the value[1][4], 121 vs. 76 (I don't know why)
Focus on one strange value:
This code is used to replay the calculation process of the value[1][4], originally I was expecting a trial and error process could lead me to solve this problem, to get my wanted number of 76, but no matter how I tried, it didn't output 76. If you want to try this, I paste this code for your convenience.
#%% A test code to check the calculation process
weight_quantized_sample = weight_quantized[2]
M_t = input_scale * weight_scale / output_scale
ifmap_t = np.int32(input_quantized[:,1:4,7:10])
weight_t = np.int32(weight_quantized_sample)
bias_t = bias[2]
bias_q = bias_t/output_scale
res_t = 0
for ch in range(3):
ifmap_offset = ifmap_t[ch]-np.int32(input_zero)
weight_offset = weight_t[ch]-np.int32(weight_zero)
res_ch = np.multiply(ifmap_offset, weight_offset)
res_ch = res_ch.sum()
res_t = res_t + res_ch
res_mul = M_t*res_t
# for n in range(1, 30):
# res_mul = multiply(n, M_t, res_t)
res_t = round(res_mul + output_zero + bias_q)
print(res_t)
Could you help me out of this, have been stuck here for a long time.
I implemented my own version of quantized convolution and got from 99.999% to 100% hitrate (and mismatch of a single value is by 1 that I can consider to be a rounding issue). The link on the paper in the question helped a lot.
But I found that your formulas are the same as mine. So I don't know what was your issue. As I understand quantization in pytorch is hardware dependent.
Here is my code:
def my_Conv2dRelu_b2(input_q, conv_layer, output_shape):
'''
Args:
input_q: quantized tensor
conv_layer: quantized tensor
output_shape: the pre-computed shape of the result
Returns:
'''
output = np.zeros(output_shape)
# extract needed float numbers from quantized operations
weights_scale = conv_layer.weight().q_per_channel_scales()
input_scale = input_q.q_scale()
weights_zp = conv_layer.weight().q_per_channel_zero_points()
input_zp = input_q.q_zero_point()
# extract needed convolution parameters
padding = conv_layer.padding
stride = conv_layer.stride
# extract float numbers for results
output_zp = conv_layer.zero_point
output_scale = conv_layer.scale
conv_weights_int = conv_layer.weight().int_repr()
input_int = input_q.int_repr()
biases = conv_layer.bias().numpy()
for k in range(input_q.shape[0]):
for i in range(conv_weights_int.shape[0]):
output[k][i] = manual_convolution_quant(
input_int[k].numpy(),
conv_weights_int[i].numpy(),
biases[i],
padding=padding,
stride=stride,
image_zp=input_zp, image_scale=input_scale,
kernel_zp=weights_zp[i].item(), kernel_scale=weights_scale[i].item(),
result_zp=output_zp, result_scale=output_scale
)
return output
def manual_convolution_quant(image, kernel, b, padding, stride, image_zp, image_scale, kernel_zp, kernel_scale,
result_zp, result_scale):
H = image.shape[1]
W = image.shape[2]
new_H = H // stride[0]
new_W = W // stride[1]
results = np.zeros([new_H, new_W])
M = image_scale * kernel_scale / result_scale
bias = b / result_scale
paddedIm = np.pad(
image,
[(0, 0), (padding[0], padding[0]), (padding[1], padding[1])],
mode="constant",
constant_values=image_zp,
)
s = kernel.shape[1]
for i in range(new_H):
for j in range(new_W):
patch = paddedIm[
:, i * stride[0]: i * stride[0] + s, j * stride[1]: j * stride[1] + s
]
res = M * ((kernel - kernel_zp) * (patch - image_zp)).sum() + result_zp + bias
if res < 0:
res = 0
results[i, j] = round(res)
return results
Code to compare pytorch and my own version.
def calc_hit_rate(array1, array2):
good = (array1 == array2).astype(np.int).sum()
all = array1.size
return good / all
# during inference
y2 = model.conv1(y1)
y2_int = torch.int_repr(y2)
y2_int_manual = my_Conv2dRelu_b2(y1, model.conv1, y2.shape)
print(f'y2 hit rate= {calc_hit_rate(y2.int_repr().numpy(), y2_int_manual)}') #hit_rate=1.0

Merging two tensors by convolution in Keras

I'm trying to convolve two 1D tensors in Keras.
I get two inputs from other models:
x - of length 100
ker - of length 5
I would like to get the 1D convolution of x using the kernel ker.
I wrote a Lambda layer to do it:
import tensorflow as tf
def convolve1d(x):
y = tf.nn.conv1d(value=x[0], filters=x[1], padding='VALID', stride=1)
return y
x = Input(shape=(100,))
ker = Input(shape=(5,))
y = Lambda(convolve1d)([x,ker])
model = Model([x,ker], [y])
I get the following error:
ValueError: Shape must be rank 4 but is rank 3 for 'lambda_67/conv1d/Conv2D' (op: 'Conv2D') with input shapes: [?,1,100], [1,?,5].
Can anyone help me understand how to fix it?
It was much harder than I expected because Keras and Tensorflow don't expect any batch dimension in the convolution kernel so I had to write the loop over the batch dimension myself, which requires to specify batch_shape instead of just shape in the Input layer. Here it is :
import numpy as np
import tensorflow as tf
import keras
from keras import backend as K
from keras import Input, Model
from keras.layers import Lambda
def convolve1d(x):
input, kernel = x
output_list = []
if K.image_data_format() == 'channels_last':
kernel = K.expand_dims(kernel, axis=-2)
else:
kernel = K.expand_dims(kernel, axis=0)
for i in range(batch_size): # Loop over batch dimension
output_temp = tf.nn.conv1d(value=input[i:i+1, :, :],
filters=kernel[i, :, :],
padding='VALID',
stride=1)
output_list.append(output_temp)
print(K.int_shape(output_temp))
return K.concatenate(output_list, axis=0)
batch_input_shape = (1, 100, 1)
batch_kernel_shape = (1, 5, 1)
x = Input(batch_shape=batch_input_shape)
ker = Input(batch_shape=batch_kernel_shape)
y = Lambda(convolve1d)([x,ker])
model = Model([x, ker], [y])
a = np.ones(batch_input_shape)
b = np.ones(batch_kernel_shape)
c = model.predict([a, b])
In the current state :
It doesn't work for inputs (x) with multiple channels.
If you provide several filters, you get as many outputs, each being the convolution of the input with the corresponding kernel.
From given code it is difficult to point out what you mean when you say
is it possible
But if what you mean is to merge two layers and feed merged layer to convulation, yes it is possible.
x = Input(shape=(100,))
ker = Input(shape=(5,))
merged = keras.layers.concatenate([x,ker], axis=-1)
y = K.conv1d(merged, 'same')
model = Model([x,ker], y)
EDIT:
#user2179331 thanks for clarifying your intention. Now you are using Lambda Class incorrectly, that is why the error message is showing.
But what you are trying to do can be achieved using keras.backend layers.
Though be noted that when using lower level layers you will lose some higher level abstraction. E.g when using keras.backend.conv1d you need to have input shape of (BATCH_SIZE,width, channels) and kernel with shape of (kernel_size,input_channels,output_channels). So in your case let as assume the x has channels of 1(input channels ==1) and y also have the same number of channels(output channels == 1).
So your code now can be refactored as follows
from keras import backend as K
def convolve1d(x,kernel):
y = K.conv1d(x,kernel, padding='valid', strides=1,data_format="channels_last")
return y
input_channels = 1
output_channels = 1
kernel_width = 5
input_width = 100
ker = K.variable(K.random_uniform([kernel_width,input_channels,output_channels]),K.floatx())
x = Input(shape=(input_width,input_channels)
y = convolve1d(x,ker)
I guess I have understood what you mean. Given the wrong example code below:
input_signal = Input(shape=(L), name='input_signal')
input_h = Input(shape=(N), name='input_h')
faded= Lambda(lambda x: tf.nn.conv1d(input, x))(input_h)
You want to convolute each signal vector with different fading coefficients vector.
The 'conv' operation in TensorFlow, etc. tf.nn.conv1d, only support a fixed value kernel. Therefore, the code above can not run as you want.
I have no idea, too. The code you given can run normally, however, it is too complex and not efficient. In my idea, another feasible but also inefficient way is to multiply with the Toeplitz matrix whose row vector is the shifted fading coefficients vector. When the signal vector is too long, the matrix will be extremely large.

First non demo example for Gaussian process using GPML (Matlab)?

After having some basics understanding of GPML toolbox , I written my first code using these tools. I have a data matrix namely data consist of two array values of total size 1000. I want to use this matrix to estimate the GP value using GPML toolbox. I have written my code as follows :
x = data(1:200,1); %training inputs
Y = data(1:201,2); %, training targets
Ys = data(201:400,2);
Xs = data(201:400,1); %possibly test cases
covfunc = {#covSE, 3};
ell = 1/4; sf = 1;
hyp.cov = log([ell; sf]);
likfunc = #likGauss;
sn = 0.1;
hyp.lik = log(sn);
[ymu ys2 fmu fs2] = gp(hyp, #infExact, [], covfunc, likfunc,X,Y,Xs,Ys);
plot(Xs, fmu);
But when I am running this code getting error 'After having some basics understanding of GPML toolbox , I written my first code using these tools. I have a data matrix namely data consist of two array values of total size 1000. I want to use this matrix to estimate the GP value using GPML toolbox. I have written my code as follows :
x = data(1:200,1); %training inputs
Y = data(1:201,2); %, training targets
Ys = data(201:400,2);
Xs = data(201:400,1); %possibly test cases
covfunc = {#covSE, 3};
ell = 1/4; sf = 1;
hyp.cov = log([ell; sf]);
likfunc = #likGauss;
sn = 0.1;
hyp.lik = log(sn);
[ymu ys2 fmu fs2] = gp(hyp, #infExact, [], covfunc, likfunc,X,Y,Xs,Ys);
plot(Xs, fmu);
But when I am running this code getting:
Error using covMaha (line 58) Parameter mode is either 'eye', 'iso',
'ard', 'proj', 'fact', or 'vlen'
Please if possible help me to figure out where I am making mistake ?
I know this is way late, but I just ran into this myself. The way to fix it is to change
covfunc = {#covSE, 3};
to something like
covfunc = {#covSE, 'iso'};
It doesn't have to be 'iso', it can be any of the options listed in the error message. Just make sure your hyperparameters are set correctly for the specific mode you choose. This is detailed more in the covMaha.m file in GPML.

Variable error rate of SVM Classifier using K-Fold Cross Vaidation Matlab

I'm using K-Fold Cross-validation to get the error rate of a SVM Classifier. This is the code with wich I'm getting the error rate for 8-Fold Cross-validation:
data = load('Entrenamiento.txt');
group = importdata('Grupos.txt');
CP = classperf(group);
N = length(group);
k = 8;
indices = crossvalind('KFold',N,k);
single_error = zeros(1,k);
for j = 1:k
test = (indices==j);
train = ~test;
SVMModel_1 = fitcsvm(data(train,:),group(train,:),'BoxConstraint',1,'KernelFunction','linear');
classification = predict(SVMModel_1,data(test,:));
classperf(CP,classification,test);
single_error(1,j) = CP.ErrorRate;
end
confusion_matrix = CP.CountingMatrix
VP = confusion_matrix(1,1);
FP = confusion_matrix(1,2);
FN = confusion_matrix(2,1);
VN = confusion_matrix(2,2);
mean_error = mean(single_error)
However, the mean_error changes each time I run the script. This is due to crossvalind, which generates random cross-validation indices, so each time I run the script, it generates different random indices.
What should I do to calculate the true error rate? Should I calculate the mean error rate of n code executions? Or what value should I use?
You can check wiki,
In k-fold cross-validation, the original sample is randomly partitioned into k equal size subsamples.
and
The k results from the folds can then be averaged (or otherwise combined) to produce a single estimation.
So no worries about different error rates of randomly selecting folds.
Of course the results will be different.
However if your error rate is in wide range then increasing k would help.
Also rng can be used to get fixed results.