Is U+0085 NEXT LINE (NEL) deprecated? - unicode

There is few information about NEL. I think it was supposed to replace LF and CR LF, but it seems like it wasn't very used.
Is it somehow deprecated and should applications interpret it as a new line?

There are many different code points which can be used as line separators, mostly for legacy reasons. Unicode's design seeks to preserve all information, so text can be roundtrip en- and decoded to/from Unicode without information loss. NEL is/was used in EBCDIC to represent newlines, so it made its way into Unicode as a separate character.
It's not "deprecated" in the sense that it still fulfils the function it was designed for, but you will hardly find it in actual use unless you're dealing with legacy EBCDIC somehow. If you do, you may want to treat it as newline, but many modern systems to date just treat it as whitespace.
The Wikipedia article on NEL has more information.

Related

What are valid uses of U+0080 through U+009F?

I'm making a virtual computer with a custom font and programming environment (Mini Micro), all Unicode based. I have need for a few custom glyphs in my environment. I know about the Private Use Areas, but I'm wondering about the "control" code points at U+0080 through U+009F. I can't find any documentation on what these points are for beyond "control".
Would it be a gross abuse of Unicode to tuck a few of my custom glyphs in there? What would be a proper use of them?
Wikipedia lists their meaning. You get 2 of them for your use, U+0091 and U+0092.
The 0x80 - 0x9F range you referto to is generally called the C1 control characters. Like other control codes, the C1s are for code extension, and by their very nature, some are generally left open for further expansion and thus have only vague standardization.
The original and most comprehensive reference is probably ECMA-48 - up to the Fifth Edition in June 1991. (The link takes you to a free download in PDF format.)
For additional glyphs, C1 codes would not be appropriate. In effect, the whole idea of control codes is that they are the special case of non-graphical codes.
UNICODE has continued to evolve, with an emoji block that has a lot of "characters" you might not expect. Let's try one: 💎 it is officially called the GemStone Emoji. I used this copy/paste website to insert it, you might look to see if something you can use has been standardized in the Emoji code block.
One of the interesting things about the emoji characters is that they are double-wide, even in a fixed-width font.
Microsoft uses them for smart quotes the Euro and a few other symbols in its latin-1 extension cp1252. As this character encoding is frequently reported as latin-1 using these code points for other uses can cause problems, especially as latin-1 is supposed to be code point equivalent to Unicode. This Wikipedia page gives some history and the meanings of these control characters.

Are there any real alternatives to unicode?

As a C++ developer supporting unicode is, putting it mildly, a pain in the butt. Unicode has a few unfortunate properties that makes it very hard to determine the case of a letter, convert them or pretty much anything beyond identifying a single known codepoint or so (which may or may not be a letter). The only real rescue, it seems, is ICU for those who are unfortunate enough to not have unicode support builtin the language (i.e. C and C++). Support for unicode in other languages may or may not be good enough.
So, I thought, there must be a real alternative to unicode! i.e. an encoding that does allow easy identification of character classes, besides having a lookup datastructure (tree, table, whatever), and identifying the relationship between characters? I suspect that any such encoding would likely be multi-byte for most text -- that's not a real concern to me, but I accept that it is for others. Providing such an encoding is a lot of work, so I'm not really expecting any such encoding to exist 😞.
Short answer: not that I know of.
As a non-C++ developer, I don't know what specifically is a pain about Unicode, but since you didn't tag the question with C++, I still dare to attempt an answer.
While I'm personally very happy about Unicode in general, I agree that some aspects are cumbersome.
Some of them could arguably be improved if Unicode was redesigned from scratch, eg. by removing some redundancies like the "Latin Greek" math letters besides the actual Greek ones (but that would also break compatibility with older encodings).
But most of the "pains" just reflect the chaotic usage of writing in the first place.
You mention yourself the problem of uppercase "i", which is "I" in some, "İ" in other orthographies, but there are tons of other difficulties – eg. German "ß", which is lowercase, but has no uppercase equivalent (well, it has now, but is rarely used); or letters that look different in final position (Greek "σ"/"ς"); or quotes with inverted meaning («French style» vs. »Swiss style«, “English” vs. „German style“)... I could continue for a while.
I don't see how an encoding could help with that, other than providing tables of character properties, equivalences, and relations, which is what Unicode does.
You say in comments that, by looking at the bytes of an encoded character, you want it to tell you if it's upper or lower case.
To me, this sounds like saying: "When I look at a number, I want it to tell me if it's prime."
I mean, not even ASCII codes tell you if they are upper or lower case, you just memorised the properties table which tells you that 41..5A is upper, 61..7A is lower case.
But it's hard to memorise or hardcode these ranges for all 120k Unicode codepoints. So the easiest thing is to use a table look-up.
There's also a bit of confusion about what "encoding" means.
Unicode doesn't define any byte representation, it only assigns codepoints, ie. integers, to character definitions, and it maintains the said tables.
Encodings in the strict sense ("codecs") are the transformation formats (UTF-8 etc.), which define a mapping between the codepoints and their byte representation.
Now it would be possible to define a new UTF which maps codepoints to bytes in a way that provides a pattern for upper/lower case.
But what could that be?
Odd for upper, even for lower case?
But what about letters without upper-/lower-case distinction?
And then, characters that aren't letters?
And what about all the other character categories – punctuation, digits, whitespace, symbols, combining diacritics –, why not represent those as well?
You could put each in a predefined range, but what happens if too many new characters are added to one of the categories?
To sum it up: I don't think what you ask for is possible.

Why are there different encoding types?

This is a noob question, but I wanna know why there are different encoding types and what are their differences (ie. ASCII, utf-8 and 16, base64, etc.)
Reasons are many I believe but the main point is: "How many characters you need to display (encode)?" If you live in US for example, you could go pretty far with ASCII. But in many counties we need characters like ä, å, ü etc. (If SO was ASCII only or you try to read this text as ASCII encoded text, you'd see some weird characters in the places of ä, å and ü.) Think also the China, Japan, Thailand and other "exotic" countires. Those weird figures on photos you may have seen around the world just might be letters, not pretty pictures.
As for the differences between different encoding types you need to see their specification. Here's something for UTF-8.
http://www.unicode.org/standard/standard.html
http://www.utf-8.com/
http://en.wikipedia.org/wiki/UTF-8#Compared_to_other_multi-byte_encodings
I'm not familiar with UTF-16. Here's some information about the differences.
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode_plane
Base64 is used when there is a need to encode binary data that needs to be stored and transferred over media that are designed to deal with textual data. If you've ever made somesort of email system with PHP, you've probably encountered Base64.
http://en.wikipedia.org/wiki/Base64
http://www.phpeveryday.com/articles/PHP-Email-Using-Embedded-Images-in-HTML-Email-P113.html
Is short: To support computer program's user interface localizations to many different languages. (Programming languages still mainly consist of characters found in ASCII encoding, althought it's possible for example in Java to use UTF-8 encoding in variable names, and the source code file is usually stored as something else than ASCII encoded text, for example UTF-8 encoding.)
In short vol.2: Always when different people are trying to solve some problem from a specific point of view (or even without a point of view if it's even possible), results may be quite different. Quote from Joel's unicode article (link below): "Because bytes have room for up to eight bits, lots of people got to thinking, "gosh, we can use the codes 128-255 for our own purposes." The trouble was, lots of people had this idea at the same time, and they had their own ideas of what should go where in the space from 128 to 255."
Thanks to Joachim and tchrist for all the info and discussion. Here's two articles I just read. (Both links are on the page I linked to earlier.) I'd forgotten most of the stuff from Joel's article since I last read it a few years back. Good introduction to the subject I hope. Mark Davis goes a little deeper.
http://www.joelonsoftware.com/articles/Unicode.html
http://www.icu-project.org/docs/papers/forms_of_unicode/
The real reason why there are so many variants is that the Unicode consortium came along too late.
In The Beginning memory and storage was expensive and using more than 8 (or sometimes only 7) bit of memory to store a single character was considered excessive. Thus pretty much all text was stored using 7 or 8 bit per character. Clearly, 8 bit are not enough memory to represent the characters of all human languages. It's barely enough to represent most characters used in a single language (and for some languages even that's not possible). Therefore many different character encodings where designed to allow different languages (English, German, Greek, Russian, ...) to encode their texts in 8 bits per characters. After all a single text file (and usually even a single computer system) will only ever used in a single language, right?
This led to a situation where there was no single agreed-upon mapping of characters to numbers of any kind. Many different, incompatible solutions where produced and no real central control existed. Some computer systems used ASCII, others used EBCDIC (or more precisely: one of the many variations of EBCDIC), ISO-8859-* (or one of its many derivatives) or any of a big list of encodings that are hardly heard about now.
Finally, the Unicode Consortium stepped up to the task to produce that single mapping (together with lots of auxiliary data that's useful but outside of the bounds of this answer).
When the Unicode consortium finally produced a fairly comprehensive list of characters that a computer might represent (together with a number of encoding schemes to encode them to binary data, depending on your concrete needs), the other character encoding schemes were already widely used. This slowed down the adoption of Unicode and its encodings (UTF-8, UTF-16) considerably.
These days, if you want to represent text, your best bet is to use one of the few encodings that can represent all Unicode characters. UTF-8 and UTF-16 together should suffice for 99% of all use cases, UTF-32 covers almost all the others. And just to be clear: all the UTF-* encodings can encode all valid Unicode characters. But due to the fact that UTF-8 and UTF-16 are variable-width encodings, they might not be ideal for all use cases. Unless you need to be able to interact with a legacy system that can't handle those encodings, there is rarely a reason to choose anything else these days.
The main reason is to be able to show more characters. When the internet was in it's infancy, noone really planned ahead thinking that one day there would be people using it from all countries and all languages around the world. So a small character set was good enough. Gradually it was revealed to be limited and English-centric, thus the demand for bigger character sets.

What Unicode characters are dangerous?

What Unicode characters (more precisely codepoints) are dangerous and should be blacklisted and prohibited for the users to use?
I know that BIDI override characters and the "zero width space" are very prone to make problems, but what others are there?
Thanks
Characters aren’t dangerous: only inappropriate uses of them are.
You might consider reading things like:
Unicode Standard Annex #31: Unicode Identifier and Pattern Syntax
RFC 3454: Preparation of Internationalized Strings (“stringprep”)
It is impossible to guess what you mean by dangerous.
A Golden Rule in security is to whitelist instead of blacklist, instead of trying to cover all bad characters, it is a much better idea to validate based on ensuring the user only use known good characters.
There are solutions that help you build the large whitelist that is required for international whitelisting. For example, in .NET there is UnicodeCategory.
The idea is that instead of whitelisting thousands of individual characters, the library assigns them into categories like alphanumeric characters, punctuations, control characters, and such.
Tutorial on whitelisting international characters in .NET
Unicode Regex: Categories
'HANGUL FILLER' (U+3164)
Since Unicode 1.1 in 1993, there is an empty wide, zero space character.
We can't see it, neither copy/paste it alone because we can't select it!
It need to be generated, by the unix keyboard shortcut: CTRL + SHIFT + u + 3164
It can pretty much 💩 up anything: variables, function name, url, file names, mimic DNS, invalidate hash strings, database entries, blog posts, logins, allow to fake identical accounts, etc.
DEMO 1: Altering variables
The variable hijacked contains a Hangul Filler char, the console log call the variable without the char:
const normal = "Hello w488ld"
const hijaㅤcked = "Hello w488ld"
console.log(normal)
console.log(hijacked)
DEMO 2: Hijack URL's
Those 3 url will lead to xn--stackoverflow-fr16ea.com:
https://stackㅤㅤoverflow.com
https://stackㅤㅤoverflow.com
https://stackㅤㅤoverflow.com
See Unicode Security Considerations Report.
It covers various aspects, from spoofing of rendered strings to dangers of processing UTF encodings in unsafe languages.
U+2800 BRAILLE PATTERN BLANK - a Braille character without any "dots". It looks like a regular "space" but is not classified as one.

What are the experiences with using unicode in identifiers

These days, more languages are using unicode, which is a good thing. But it also presents a danger. In the past there where troubles distinguising between 1 and l and 0 and O. But now we have a complete new range of similar characters.
For example:
ì, î, ï, ı, ι, ί, ׀ ,أ ,آ, ỉ, ﺃ
With these, it is not that difficult to create some very hard to find bugs.
At my work, we have decided to stay with the ANSI characters for identifiers. Is there anybody out there using unicode identifiers and what are the experiences?
Besides the similar character bugs you mention and the technical issues that might arise when using different editors (w/BOM, wo/BOM, different encodings in the same file by copy pasting which is only a problem when there are actually characters that cannot be encoded in ASCII and so on), I find that it's not worth using Unicode characters in identifiers. English has become the lingua franca of development and you should stick to it while writing code.
This I find particularly true for code that may be seen anywhere in the world by any developer (open source, or code that is sold along with the product).
My experience with using unicode in C# source files was disastrous, even though it was Japanese (so there was nothing to confuse with an "i"). Source Safe doesn't like unicode, and when you find yourself manually fixing corrupted source files in Word you know something isn't right.
I think your ANSI-only policy is excellent. I can't really see any reason why that would not be viable (as long as most of your developers are English, and even if they're not the world is used to the ANSI character set).
I think it is not a good idea to use the entire ANSI character set for identifiers. No matter which ANSI code page you're working in, your ANSI code page includes characters that some other ANSI code pages don't include. So I recommend sticking to ASCII, no character codes higher than 127.
In experiments I have used a wider range of ANSI characters than just ASCII, even in identifiers. Some compilers accepted it. Some IDEs needed options to be set for fonts that could display the characters. But I don't recommend it for practical use.
Now on to the difference between ANSI code pages and Unicode.
In experiments I have stored source files in Unicode and used Unicode characters in identifiers. Some compilers accepted it. But I still don't recommend it for practical use.
Sometimes I have stored source files in Unicode and used escape sequences in some strings to represent Unicode character values. This is an important practice and I recommend it highly. I especially had to do this when other programmers used ANSI characters in their strings, and their ANSI code pages were different from other ANSI code pages, so the strings were corrupted and caused compilation errors or defective results. The way to solve this is to use Unicode escape sequences.
I would also recommend using ascii for identifiers. Comments can stay in a non-english language if the editor/ide/compiler etc. are all locale aware and set up to use the same encoding.
Additionally, some case insensitive languages change the identifiers to lowercase before using, and that causes problems if active system locale is Turkish or Azerbaijani . see here for more info about Turkish locale problem. I know that PHP does this, and it has a long standing bug.
This problem is also present in any software that compares strings using Turkish locales, not only the language implementations themselves, just to point out. It causes many headaches
It depends on the language you're using. In Python, for example, is easierfor me to stick to unicode, as my aplications needs to work in several languages. So when I get a file from someone (something) that I don't know, I assume Latin-1 and translate to Unicode.
Works for me, as I'm in latin-america.
Actually, once everithing is ironed out, the whole thing becomes a smooth ride.
Of course, this depends on the language of choice.
I haven't ever used unicode for identifier names. But what comes to my mind is that Python allows unicode identifiers in version 3: PEP 3131.
Another language that makes extensive use of unicode is Fortress.
Even if you decide not to use unicode the problem resurfaces when you use a library that does. So you have to live with it to a certain extend.