How connect the coordinate and fill the area to create a binary mask? - matlab

I need to create a binary mask from a series of coordinates. My current code is shown below but the edges of the resulting image are not smooth. I think it is not precise and I need to make sure I am connecting exact coordinate and connect them together.
Here on the left side, I plotted the points (always 42 points) and on the right side is the output of the code. As you can see the edges are not smooth.
Here is the current code and the output: (coordinates are attached)
im is an image of size 112 x 112, filled with zero everywhere except the X, Y coordinates and inside the region filled with the 255.
function BW = mask_data(X,Y, im)
X = round(X);
Y = round(Y);
%round coordinates
X ( X < 1 ) = 1;
Y ( Y < 1 ) = 1;
BW = im > 255;
for p = 1:length(X)
BW(Y(p),X(p)) = 1;
end
BW = BW * 255;
BW = bwconvhull(BW);
BW = im2uint8(BW);
figure;
imshow(BW);
close all;
end

I believe the union convex hull is still your best bet. If you have images that are actually comprised of a single object then your shown algorithm should work just fine, though you are doing some redundant steps in your shown code. If that is not the case, then you may want to consider finding the convex hull of multiple components through adding the objects option to your bwconvhull call. If you strongly believe that the results are "not precise" then you may want to show an example image in which the algorithm actually fails.
As per the results not being smooth, you should logically not expect smooth boundaries for an image of size 112 x 112 with an object boundary similar to what you have shown. However, I would simply smooth the results if smooth images are preferred:
originalImage = imread('Adrress\to\your\image.png');
% To have the same image size as yours
originalImage = imresize(originalImage, [112 112]);
% Create a binary image
binaryImage = im2bw(originalImage);
% Create a binary convex hull image
UnionCH = bwconvhull(binaryImage);
% Smooth the results (note the change of binary class)
% Second arg (0.7) is the std dev of the Gaussian smoothing kernel
SmoothUnionCH = imgaussfilt(single(UnionCH), 0.7);
figure
subplot(131)
imshow(binaryImage)
title('Binary Image')
subplot(132)
imshow(UnionCH)
title('Binary Convex Hull Image')
subplot(133)
imshow(SmoothUnionCH,[])
title('Smooth Convex Hull Image')
You can adjust the size of the smoothing kernel of course. The results for the code above:

Related

Find points within polygon with multiple self intersections with Matlab

I have a polygon which intersects itself multiple times. I try to create a mask from this polygon, i.e., to find all points/pixels location within the polygon. I use the Matlab function poly2mask for this. However, due to the multiple self-intersections this is the results I obtain:
Resulting mask from poly2mask for multi-self-intersecting polygon
So, some areas remain unmasked, because of the intersections. I think Matlab sees this as some sort of inclusions. The Matlab help for poly2mask doesn't mention anything about this. Does anyone have an idea how to also include these regions in the mask?
I obtain good results combining a small erosion/dilation step and imfill as follows:
data = load('polygon_edge.mat');
x = data.polygon_edge(:, 1);
y = data.polygon_edge(:, 2);
bw1 = poly2mask(x,y,ceil(max(y)),ceil(max(x)));
se = strel('sphere',1);
bw2 = imerode(imdilate(bw1,se), se);
bw3 = imfill(bw2, 'holes');
figure
imshow(bw3)
hold on
plot(x(:, 1),y(:, 1),'g','LineWidth',2)
The small erosion and dilation step is needed to be sure that all the regions are connected even at places where the polygon is only connected through a single point, otherwise imfill may see some non-existing holes.
you can use inpolygon:
bw1 = poly2mask(x,y,1000,1000);
subplot(131)
imshow(bw1)
hold on
plot(x([1:end 1]),y([1:end 1]),'g','LineWidth',2)
title('using poly2mask')
[xq,yq] = meshgrid(1:1000);
[IN,ON] = inpolygon(xq,yq,x,y);
bw2 = IN | ON;
subplot(132)
imshow(bw2)
hold on
plot(x([1:end 1]),y([1:end 1]),'g','LineWidth',2)
title('using inpolygon')
% boundary - seggested by another answer
k = boundary(x, y, 1); % 1 == tightest single-region boundary
bw3 = poly2mask(x(k), y(k), 1000, 1000);
subplot(133)
imshow(bw3)
hold on
plot(x([1:end 1]),y([1:end 1]),'g','LineWidth',2)
title('using boundary')
Update - I updated my answer to include boundary - it not seems to work well in my case.
You should first calculate the boundary of your polygon and use this to create your mask.
k = boundary(x, y, 0.99); % 1 == tightest single-region boundary
BW = poly2mask(x(k), y(k), m, n)
Using a shrink factor of 0.99 instead of 1 avoids undercutting, but sharp non-convex corners are still not fitted correctly.

How to to identify letters on a license plate with varying perspectives

I am making a script in Matlab that takes in an image of the rear of a car. After some image processing I would like to output the original image of the car with a rectangle around the license plate of the car. Here is what I have written so far:
origImg = imread('CAR_IMAGE.jpg');
I = imresize(origImg, [500, NaN]); % easier viewing and edge connecting
G = rgb2gray(I);
M = imgaussfilt(G); % blur to remove some noise
E = edge(M, 'Canny', 0.4);
% I can assume all letters are somewhat upright
RP = regionprops(E, 'PixelIdxList', 'BoundingBox');
W = vertcat(RP.BoundingBox); W = W(:,3); % get the widths of the BBs
H = vertcat(RP.BoundingBox); H = H(:,4); % get the heights of the BBs
FATTIES = W > H; % find the BBs that are more wide than tall
RP = RP(FATTIES);
E(vertcat(RP.PixelIdxList)) = false; % remove more wide than tall regions
D = imdilate(E, strel('disk', 1)); % dilate for easier viewing
figure();
imshowpair(I, D, 'montage'); % display original image and processed image
Here are some examples:
From here I am unsure how to isolate the letters of the license plate, particularly like in the second example above where each letter has a decreased area due to the perspective of the image. My first idea was to get the bounding box of all regions and keep only the regions where the perimeter to area ratio is "similar" but this resulted in removing the letters of the plate that were connected when I dilate the image like the K and V in the fourth example above.
I would appreciate some suggestions on how I should go about isolating these letters. No code is necessary, and any advice is appreciated.
So I continued to work despite not receiving any answers here on SO and managed to get a working version through trial and error. All of the following code comes after the code in my original question and all plots below are from the first example image above. First, I found the variance for every single pixel row of the image and plotted them like so:
V = var(D, 0, 2);
X = 1:length(V);
figure();
hold on;
scatter(X, V);
I then fit a very high order polynomial to this scatter plot and saved the values where the slope of the polynomial was zero and the variance value was very low (i.e. the dark row of pixels immediately before or after a row with some white):
P = polyfit(X', V, 25);
PV = polyval(P, X);
Z = X(find(PV < 0.03 & abs(gradient(PV)) < 0.0001));
plot(X, PV); % red curve on plot
scatter(Z, zeros(1,length(Z))); % orange circles on x-axis
I then calculate the integral of the polynomial between any consecutive Z values (my dark rows), and save the two Z values between which the integral is the largest, which I mark with lines on the plot:
MAX_INTEG = -1;
MIN_ROW = -1;
MAX_ROW = -1;
for i = 1:(length(Z)-1)
TEMP_MIN = Z(i);
TEMP_MAX = Z(i+1);
Q = polyint(P);
TEMP_INTEG = diff(polyval(Q, [TEMP_MIN, TEMP_MAX]));
if (TEMP_INTEG > MAX_INTEG)
MAX_INTEG = TEMP_INTEG;
MIN_ROW = TEMP_MIN;
MAX_ROW = TEMP_MAX;
end
end
line([MIN_ROW, MIN_ROW], [-0.1, max(V)+0.1]);
line([MAX_ROW, MAX_ROW], [-0.1, max(V)+0.1]);
hold off;
Since the X-values of these lines correspond row numbers in the original image, I can crop my image between MIN_ROW and MAX_ROW:
I repeat the above steps now for the columns of pixels, crop, and remove any excess black rows of columns to result in the identified plate:
I then perform 2D cross correlation between this cropped image and the edged image D using Matlab's xcorr2 to locate the plate in the original image. After finding the location I just draw a rectangle around the discovered plate like so:

Find the real time co-ordinates of the four points marked in red in the image

To be exact I need the four end points of the road in the image below.
I used find[x y]. It does not provide satisfying result in real time.
I'm assuming the images are already annotated. In this case we just find the marked points and extract coordinates (if you need to find the red points dynamically through code, this won't work at all)
The first thing you have to do is find a good feature to use for segmentation. See my SO answer here what-should-i-use-hsv-hsb-or-rgb-and-why for code and details. That produces the following image:
we can see that saturation (and a few others) are good candidate colors spaces. So now you must transfer your image to the new color space and do thresholding to find your points.
Points are obtained using matlab's region properties looking specifically for the centroid. At that point you are done.
Here is complete code and results
im = imread('http://i.stack.imgur.com/eajRb.jpg');
HUE = 1;
SATURATION = 2;
BRIGHTNESS = 3;
%see https://stackoverflow.com/questions/30022377/what-should-i-use-hsv-hsb-or-rgb-and-why/30036455#30036455
ViewColoredSpaces(im)
%convert image to hsv
him = rgb2hsv(im);
%threshold, all rows, all columns,
my_threshold = 0.8; %determined empirically
thresh_sat = him(:,:,SATURATION) > my_threshold;
%remove small blobs using a 3 pixel disk
se = strel('disk',3');
cleaned_sat = imopen(thresh_sat, se);% imopen = imdilate(imerode(im,se),se)
%find the centroids of the remaining blobs
s = regionprops(cleaned_sat, 'centroid');
centroids = cat(1, s.Centroid);
%plot the results
figure();
subplot(2,2,1) ;imshow(thresh_sat) ;title('Thresholded saturation channel')
subplot(2,2,2) ;imshow(cleaned_sat);title('After morpphological opening')
subplot(2,2,3:4);imshow(im) ;title('Annotated img')
hold on
for (curr_centroid = 1:1:size(centroids,1))
%prints coordinate
x = round(centroids(curr_centroid,1));
y = round(centroids(curr_centroid,2));
text(x,y,sprintf('[%d,%d]',x,y),'Color','y');
end
%plots centroids
scatter(centroids(:,1),centroids(:,2),[],'y')
hold off
%prints out centroids
centroids
centroids =
7.4593 143.0000
383.0000 87.9911
435.3106 355.9255
494.6491 91.1491
Some sample code would make it much easier to tailor a specific solution to your problem.
One solution to this general problem is using impoint.
Something like
h = figure();
ax = gca;
% ... drawing your image
points = {};
points = [points; impoint(ax,initialX,initialY)];
% ... generate more points
indx = 1 % or whatever point you care about
[currentX,currentY] = getPosition(points{indx});
should do the trick.
Edit: First argument of impoint is an axis object, not a figure object.

remove the holes in an image by average values of surrounding pixels

can any one please help me in filling these black holes by values taken from neighboring non-zero pixels.
thanks
One nice way to do this is to is to solve the linear heat equation. What you do is fix the "temperature" (intensity) of the pixels in the good area and let the heat flow into the bad pixels. A passable, but somewhat slow, was to do this is repeatedly average the image then set the good pixels back to their original value with newImage(~badPixels) = myData(~badPixels);.
I do the following steps:
Find the bad pixels where the image is zero, then dilate to be sure we get everything
Apply a big blur to get us started faster
Average the image, then set the good pixels back to their original
Repeat step 3
Display
You could repeat averaging until the image stops changing, and you could use a smaller averaging kernel for higher precision---but this gives good results:
The code is as follows:
numIterations = 30;
avgPrecisionSize = 16; % smaller is better, but takes longer
% Read in the image grayscale:
originalImage = double(rgb2gray(imread('c:\temp\testimage.jpg')));
% get the bad pixels where = 0 and dilate to make sure they get everything:
badPixels = (originalImage == 0);
badPixels = imdilate(badPixels, ones(12));
%# Create a big gaussian and an averaging kernel to use:
G = fspecial('gaussian',[1 1]*100,50);
H = fspecial('average', [1,1]*avgPrecisionSize);
%# User a big filter to get started:
newImage = imfilter(originalImage,G,'same');
newImage(~badPixels) = originalImage(~badPixels);
% Now average to
for count = 1:numIterations
newImage = imfilter(newImage, H, 'same');
newImage(~badPixels) = originalImage(~badPixels);
end
%% Plot the results
figure(123);
clf;
% Display the mask:
subplot(1,2,1);
imagesc(badPixels);
axis image
title('Region Of the Bad Pixels');
% Display the result:
subplot(1,2,2);
imagesc(newImage);
axis image
set(gca,'clim', [0 255])
title('Infilled Image');
colormap gray
But you can get a similar solution using roifill from the image processing toolbox like so:
newImage2 = roifill(originalImage, badPixels);
figure(44);
clf;
imagesc(newImage2);
colormap gray
notice I'm using the same badPixels defined from before.
There is a file on Matlab file exchange, - inpaint_nans that does exactly what you want. The author explains why and in which cases it is better than Delaunay triangulation.
To fill one black area, do the following:
1) Identify a sub-region containing the black area, the smaller the better. The best case is just the boundary points of the black hole.
2) Create a Delaunay triangulation of the non-black points in inside the sub-region by:
tri = DelaunayTri(x,y); %# x, y (column vectors) are coordinates of the non-black points.
3) Determine the black points in which Delaunay triangle by:
[t, bc] = pointLocation(tri, [x_b, y_b]); %# x_b, y_b (column vectors) are coordinates of the black points
tri = tri(t,:);
4) Interpolate:
v_b = sum(v(tri).*bc,2); %# v contains the pixel values at the non-black points, and v_b are the interpolated values at the black points.

How to draw a straight across the centroid points of the barcode using best fit points Matlab

This is the processed image and I can't increase the bwareaopen() as it won't work for my other image.
Anyway I'm trying to find the shortest points in the centre points of the barcode, to get the straight line across the centre points in the barcode.
Example:
After doing a centroid command, the points in the barcode are near to each other. Therefore, I just wanted to get the shortest points(which is the barcode) and draw a straight line across.
All the points need not be join, best fit points will do.
Step 1
Step 2
Step 3
If you dont have the x,y elements Andrey uses, you can find them by segmenting the image and using a naive threshold value on the area to avoid including the number below the bar code.
I've hacked out a solution in MATLAB doing the following:
Loading the image and making it binary
Extracting all connected components using bwlabel().
Getting useful information about each of them via regionprops() [.centroid will be a good approximation to the middel point for the lines].
Thresholded out small regions (noise and numbers)
Extracted x,y coordinates
Used Andreys linear fit solution
Code:
set(0,'DefaultFigureWindowStyle','docked');
close all;clear all;clc;
Im = imread('29ekeap.jpg');
Im=rgb2gray(Im);
%%
%Make binary
temp = zeros(size(Im));
temp(Im > mean(Im(:)))=1;
Im = temp;
%Visualize
f1 = figure(1);
imagesc(Im);colormap(gray);
%Find connected components
LabelIm = bwlabel(Im);
RegionInfo = regionprops(LabelIm);
%Remove background region
RegionInfo(1) = [];
%Get average area of regions
AvgArea = mean([RegionInfo(1:end).Area]);
%Vector to keep track of likely "bar elements"
Bar = zeros(length(RegionInfo),1);
%Iterate over regions, plot centroids if area is big enough
for i=1:length(RegionInfo)
if RegionInfo(i).Area > AvgArea
hold on;
plot(RegionInfo(i).Centroid(1),RegionInfo(i).Centroid(2),'r*')
Bar(i) = 1;
end
end
%Extract x,y points for interpolation
X = [RegionInfo(Bar==1).Centroid];
X = reshape(X,2,length(X)/2);
x = X(1,:);
y = X(2,:);
%Plot line according to Andrey
p = polyfit(x,y,1);
xMin = min(x(:));
xMax = max(x(:));
xRange = xMin:0.01:xMax;
yRange = p(1).*xRange + p(2);
plot(xRange,yRange,'LineWidth',2,'Color',[0.9 0.2 0.2]);
The result is a pretty good fitted line. You should be able to extend it to the ends by using the 'p' polynomal and evaluate when you dont encounter any more '1's if needed.
Result:
If you already found the x,y of the centers, you should use polyfit function:
You will then find the polynomial coefficients of the best line. In order to draw a segment, you can take the minimal and maximal x
p = polyfit(x,y,1);
xMin = min(x(:));
xMax = max(x(:));
xRange = xMin:0.01:xMax;
yRange = p(1).*xRange + p(2);
plot(xRange,yRange);
If your ultimate goal is to generate a line perpendicular to the bars in the bar code and passing roughly through the centroids of the bars, then I have another option for you to consider...
A simple solution would be to perform a Hough transform to detect the primary orientation of lines in the bar code. Once you find the angle of the lines in the bar code, all you have to do is rotate that by 90 degrees to get the slope of a perpendicular line. The centroid of the entire bar code can then be used as an intercept for this line. Using the functions HOUGH and HOUGHPEAKS from the Image Processing Toolbox, here's the code starting with a cropped version of your image from step 1:
img = imread('bar_code.jpg'); %# Load the image
img = im2bw(img); %# Convert from RGB to BW
[H, theta, rho] = hough(img); %# Perform the Hough transform
peak = houghpeaks(H); %# Find the peak pt in the Hough transform
barAngle = theta(peak(2)); %# Find the angle of the bars
slope = -tan(pi*(barAngle + 90)/180); %# Compute the perpendicular line slope
[y, x] = find(img); %# Find the coordinates of all the white image points
xMean = mean(x); %# Find the x centroid of the bar code
yMean = mean(y); %# Find the y centroid of the bar code
xLine = 1:size(img,2); %# X points of perpendicular line
yLine = slope.*(xLine - xMean) + yMean; %# Y points of perpendicular line
imshow(img); %# Plot bar code image
hold on; %# Add to the plot
plot(xMean, yMean, 'r*'); %# Plot the bar code centroid
plot(xLine, yLine, 'r'); %# Plot the perpendicular line
And here's the resulting image: