I have is over 25 million rows, I'm trying to learn what needs to be done to speed up the query time.
"Properties" column is integer[]. I created a GIN index on F."Properties", what is slowing my query and how do I solve it?
SELECT
F. "Id",
F. "Name",
F. "Url",
F. "CountryModel",
F. "IsVerify",
count(*) AS Counter
FROM
public. "Firms" F,
LATERAL unnest(F."Properties") AS P
WHERE
F. "CountryId" = 1
AND P = ANY (ARRAY[126,128])
AND "Properties" && ARRAY[126,128]
AND F. "Deleted" = FALSE
GROUP BY
F. "Id"
ORDER BY
F. "IsVerify" DESC,
Counter DESC,
F. "PageRank" DESC OFFSET 0 ROWS FETCH FIRST 20 ROW ONLY
**Query Explain Analyze**
"Limit (cost=793826.15..793826.20 rows=20 width=100) (actual time=12255.433..12257.874 rows=20 loops=1)"
" -> Sort (cost=793826.15..794287.87 rows=184689 width=100) (actual time=12255.433..12257.872 rows=20 loops=1)"
" Sort Key: f.""IsVerify"" DESC, (count(*)) DESC, f.""PageRank"" DESC"
" Sort Method: top-N heapsort Memory: 29kB"
" -> GroupAggregate (cost=755368.13..788911.64 rows=184689 width=100) (actual time=12062.457..12224.136 rows=201352 loops=1)"
" Group Key: f.""Id"""
" -> Nested Loop (cost=755368.13..785217.86 rows=369378 width=92) (actual time=12062.450..12176.968 rows=205124 loops=1)"
" -> Gather Merge (cost=755368.12..776878.19 rows=184689 width=120) (actual time=12062.435..12090.924 rows=201352 loops=1)"
" Workers Planned: 2"
" Workers Launched: 2"
" -> Sort (cost=754368.09..754560.48 rows=76954 width=120) (actual time=12050.371..12060.077 rows=67117 loops=3)"
" Sort Key: f.""Id"""
" Sort Method: external merge Disk: 9848kB"
" Worker 0: Sort Method: external merge Disk: 9840kB"
" Worker 1: Sort Method: external merge Disk: 9784kB"
" -> Parallel Bitmap Heap Scan on ""Firms"" f (cost=1731.34..743387.12 rows=76954 width=120) (actual time=44.825..12010.247 rows=67117 loops=3)"
" Recheck Cond: (""Properties"" && '{126,128}'::integer[])"
" Rows Removed by Index Recheck: 356198"
" Filter: ((NOT ""Deleted"") AND (""CountryId"" = 1))"
" Heap Blocks: exact=17368 lossy=47419"
" -> Bitmap Index Scan on ix_properties_gin (cost=0.00..1685.17 rows=184689 width=0) (actual time=47.787..47.787 rows=201354 loops=1)"
" Index Cond: (""Properties"" && '{126,128}'::integer[])"
" -> Memoize (cost=0.01..0.14 rows=2 width=0) (actual time=0.000..0.000 rows=1 loops=201352)"
" Cache Key: f.""Properties"""
" Hits: 179814 Misses: 21538 Evictions: 0 Overflows: 0 Memory Usage: 3076kB"
" -> Function Scan on unnest p (cost=0.00..0.13 rows=2 width=0) (actual time=0.001..0.001 rows=1 loops=21538)"
" Filter: (p = ANY ('{126,128}'::integer[]))"
" Rows Removed by Filter: 6"
"Planning Time: 2.143 ms"
"Execution Time: 12259.445 ms"
I have a query which runs fast during off period but when there is load it runs very slow.
In the New Relic it sometimes shows to run 5-8mins.
The query looks simple but the View definition may be not that simple.
So wanted to know if there is any scope of optimization
Database version - "PostgreSQL 10.14 on x86_64-pc-linux-gnu, compiled by x86_64-unknown-linux-gnu-gcc (GCC) 4.9.4, 64-bit"
The query which comes up in any monitoring tool is:
SELECT
esnpartvie0_.esn_id AS col_0_0_,
esnpartvie0_.esn AS col_1_0_,
esnpartvie0_.quarter_point AS col_2_0_,
esnpartvie0_.work_order_number AS col_3_0_,
esnpartvie0_.site AS col_4_0_,
sum(esnpartvie0_.critical) AS col_5_0_,
sum(esnpartvie0_.numshort) AS col_6_0_,
sum(esnpartvie0_.wa) AS col_7_0_,
esnpartvie0_.customer AS col_8_0_,
esnpartvie0_.adj_accum_date AS col_9_0_,
esnpartvie0_.g2_otr AS col_10_0_,
esnpartvie0_.induct_date AS col_11_0_,
min(esnpartvie0_.delta) AS col_12_0_,
esnpartvie0_.fiscal_week_bucket_date AS col_13_0_
FROM
moa.esn_part_view esnpartvie0_
WHERE
esnpartvie0_.esn_id = 140339
GROUP BY
esnpartvie0_.esn_id,
esnpartvie0_.esn,
esnpartvie0_.quarter_point,
esnpartvie0_.work_order_number,
esnpartvie0_.site,
esnpartvie0_.customer,
esnpartvie0_.adj_accum_date,
esnpartvie0_.g2_otr,
esnpartvie0_.induct_date,
esnpartvie0_.fiscal_week_bucket_date
The Explain Analyze, buffer plan for the same is and the link (https://explain.depesz.com/s/mr76#html)
"GroupAggregate (cost=69684.12..69684.17 rows=1 width=82) (actual time=976.163..976.228 rows=1 loops=1)"
" Group Key: esnpartvie0_.esn_id, esnpartvie0_.esn, esnpartvie0_.quarter_point, esnpartvie0_.work_order_number, esnpartvie0_.site, esnpartvie0_.customer, esnpartvie0_.adj_accum_date, esnpartvie0_.g2_otr, esnpartvie0_.induct_date, esnpartvie0_.fiscal_week_bucket_date"
" Buffers: shared hit=20301, temp read=48936 written=6835"
" -> Sort (cost=69684.12..69684.13 rows=1 width=70) (actual time=976.153..976.219 rows=14 loops=1)"
" Sort Key: esnpartvie0_.esn, esnpartvie0_.quarter_point, esnpartvie0_.work_order_number, esnpartvie0_.site, esnpartvie0_.customer, esnpartvie0_.adj_accum_date, esnpartvie0_.g2_otr, esnpartvie0_.induct_date, esnpartvie0_.fiscal_week_bucket_date"
" Sort Method: quicksort Memory: 26kB"
" Buffers: shared hit=20301, temp read=48936 written=6835"
" -> Subquery Scan on esnpartvie0_ (cost=69684.02..69684.11 rows=1 width=70) (actual time=976.078..976.158 rows=14 loops=1)"
" Buffers: shared hit=20290, temp read=48936 written=6835"
" -> GroupAggregate (cost=69684.02..69684.10 rows=1 width=2016) (actual time=976.077..976.155 rows=14 loops=1)"
" Group Key: e.esn_id, w.number, ed.adj_accum_date, (COALESCE(ed.gate_2_otr, 0)), ed.gate_0_start, ed.gate_1_stop, p.part_id, st.name, mat.name, so.name, dr.name, hpc.hpc_status_name, module.module_name, c.customer_id, m.model_id, ef.engine_family_id, s.site_id, ws.name, ic.comment"
" Buffers: shared hit=20290, temp read=48936 written=6835"
" CTE indexed_comments"
" -> WindowAgg (cost=40573.82..45076.80 rows=225149 width=118) (actual time=182.537..291.895 rows=216974 loops=1)"
" Buffers: shared hit=5226, temp read=3319 written=3327"
" -> Sort (cost=40573.82..41136.69 rows=225149 width=110) (actual time=182.528..215.549 rows=216974 loops=1)"
" Sort Key: part_comment.part_id, part_comment.created_at DESC"
" Sort Method: external merge Disk: 26552kB"
" Buffers: shared hit=5226, temp read=3319 written=3327"
" -> Seq Scan on part_comment (cost=0.00..7474.49 rows=225149 width=110) (actual time=0.014..38.209 rows=216974 loops=1)"
" Buffers: shared hit=5223"
" -> Sort (cost=24607.21..24607.22 rows=1 width=717) (actual time=976.069..976.133 rows=14 loops=1)"
" Sort Key: w.number, ed.adj_accum_date, (COALESCE(ed.gate_2_otr, 0)), ed.gate_0_start, ed.gate_1_stop, p.part_id, st.name, mat.name, so.name, dr.name, hpc.hpc_status_name, module.module_name, c.customer_id, m.model_id, ef.engine_family_id, s.site_id, ws.name, ic.comment"
" Sort Method: quicksort Memory: 28kB"
" Buffers: shared hit=20290, temp read=48936 written=6835"
" -> Nested Loop (cost=1010.23..24607.20 rows=1 width=717) (actual time=442.381..976.017 rows=14 loops=1)"
" Buffers: shared hit=20287, temp read=48936 written=6835"
" -> Nested Loop Left Join (cost=1009.94..24598.88 rows=1 width=697) (actual time=442.337..975.670 rows=14 loops=1)"
" Join Filter: (ic.part_id = p.part_id)"
" Rows Removed by Join Filter: 824838"
" Buffers: shared hit=20245, temp read=48936 written=6835"
" -> Nested Loop Left Join (cost=1009.94..19518.95 rows=1 width=181) (actual time=56.148..57.676 rows=14 loops=1)"
" Buffers: shared hit=15019"
" -> Nested Loop Left Join (cost=1009.81..19518.35 rows=1 width=183) (actual time=56.139..57.635 rows=14 loops=1)"
" Buffers: shared hit=15019"
" -> Nested Loop Left Join (cost=1009.67..19517.67 rows=1 width=181) (actual time=56.133..57.598 rows=14 loops=1)"
" Buffers: shared hit=15019"
" -> Nested Loop Left Join (cost=1009.55..19516.82 rows=1 width=179) (actual time=56.124..57.544 rows=14 loops=1)"
" Buffers: shared hit=15019"
" -> Nested Loop Left Join (cost=1009.42..19516.04 rows=1 width=178) (actual time=56.105..57.439 rows=14 loops=1)"
" Buffers: shared hit=14991"
" -> Nested Loop Left Join (cost=1009.28..19515.37 rows=1 width=175) (actual time=56.089..57.335 rows=14 loops=1)"
" Buffers: shared hit=14963"
" -> Nested Loop Left Join (cost=1009.14..19514.77 rows=1 width=170) (actual time=56.068..57.206 rows=14 loops=1)"
" Join Filter: (e.work_scope_id = ws.work_scope_id)"
" Buffers: shared hit=14935"
" -> Nested Loop Left Join (cost=1009.14..19513.55 rows=1 width=166) (actual time=56.043..57.102 rows=14 loops=1)"
" Join Filter: (e.esn_id = p.esn_id)"
" Buffers: shared hit=14921"
" -> Nested Loop (cost=9.14..31.40 rows=1 width=125) (actual time=0.081..0.130 rows=1 loops=1)"
" Buffers: shared hit=15"
" -> Nested Loop (cost=8.87..23.08 rows=1 width=118) (actual time=0.069..0.117 rows=1 loops=1)"
" Buffers: shared hit=12"
" -> Nested Loop (cost=8.73..21.86 rows=1 width=108) (actual time=0.055..0.102 rows=1 loops=1)"
" Buffers: shared hit=10"
" -> Nested Loop (cost=8.60..21.65 rows=1 width=46) (actual time=0.046..0.091 rows=1 loops=1)"
" Buffers: shared hit=8"
" -> Hash Join (cost=8.31..13.34 rows=1 width=41) (actual time=0.036..0.081 rows=1 loops=1)"
" Hash Cond: (m.model_id = e.model_id)"
" Buffers: shared hit=5"
" -> Seq Scan on model m (cost=0.00..4.39 rows=239 width=17) (actual time=0.010..0.038 rows=240 loops=1)"
" Buffers: shared hit=2"
" -> Hash (cost=8.30..8.30 rows=1 width=28) (actual time=0.009..0.010 rows=1 loops=1)"
" Buckets: 1024 Batches: 1 Memory Usage: 9kB"
" Buffers: shared hit=3"
" -> Index Scan using esn_pkey on esn e (cost=0.29..8.30 rows=1 width=28) (actual time=0.006..0.006 rows=1 loops=1)"
" Index Cond: (esn_id = 140339)"
" Filter: active"
" Buffers: shared hit=3"
" -> Index Scan using work_order_pkey on work_order w (cost=0.29..8.30 rows=1 width=13) (actual time=0.008..0.008 rows=1 loops=1)"
" Index Cond: (work_order_id = e.work_order_id)"
" Buffers: shared hit=3"
" -> Index Scan using engine_family_pkey on engine_family ef (cost=0.14..0.20 rows=1 width=66) (actual time=0.009..0.009 rows=1 loops=1)"
" Index Cond: (engine_family_id = m.engine_family_id)"
" Buffers: shared hit=2"
" -> Index Scan using site_pkey on site s (cost=0.14..1.15 rows=1 width=14) (actual time=0.013..0.013 rows=1 loops=1)"
" Index Cond: (site_id = ef.site_id)"
" Buffers: shared hit=2"
" -> Index Scan using customer_pkey on customer c (cost=0.27..8.29 rows=1 width=11) (actual time=0.012..0.012 rows=1 loops=1)"
" Index Cond: (customer_id = e.customer_id)"
" Buffers: shared hit=3"
" -> Gather (cost=1000.00..19481.78 rows=29 width=41) (actual time=55.958..56.949 rows=14 loops=1)"
" Workers Planned: 2"
" Workers Launched: 2"
" Buffers: shared hit=14906"
" -> Parallel Seq Scan on part p (cost=0.00..18478.88 rows=12 width=41) (actual time=51.855..52.544 rows=5 loops=3)"
" Filter: (active AND (esn_id = 140339))"
" Rows Removed by Filter: 226662"
" Buffers: shared hit=14906"
" -> Seq Scan on work_scope ws (cost=0.00..1.10 rows=10 width=12) (actual time=0.004..0.004 rows=1 loops=14)"
" Buffers: shared hit=14"
" -> Index Scan using source_pkey on source so (cost=0.14..0.57 rows=1 width=13) (actual time=0.005..0.005 rows=1 loops=14)"
" Index Cond: (p.source_id = source_id)"
" Buffers: shared hit=28"
" -> Index Scan using status_pkey on status st (cost=0.13..0.56 rows=1 width=11) (actual time=0.004..0.004 rows=1 loops=14)"
" Index Cond: (p.status_id = status_id)"
" Buffers: shared hit=28"
" -> Index Scan using material_stream_pkey on material_stream mat (cost=0.13..0.56 rows=1 width=9) (actual time=0.004..0.004 rows=1 loops=14)"
" Index Cond: (p.material_stream_id = material_stream_id)"
" Buffers: shared hit=28"
" -> Index Scan using dr_status_pkey on dr_status dr (cost=0.13..0.56 rows=1 width=10) (actual time=0.001..0.001 rows=0 loops=14)"
" Index Cond: (p.dr_status_id = dr_status_id)"
" -> Index Scan using hpc_status_pkey on hpc_status hpc (cost=0.13..0.56 rows=1 width=10) (actual time=0.001..0.001 rows=0 loops=14)"
" Index Cond: (p.hpc_status_id = hpc_status_id)"
" -> Index Scan using module_pkey on module (cost=0.14..0.57 rows=1 width=6) (actual time=0.001..0.001 rows=0 loops=14)"
" Index Cond: (p.module_id = module_id)"
" -> CTE Scan on indexed_comments ic (cost=0.00..5065.85 rows=1126 width=520) (actual time=13.043..61.251 rows=58917 loops=14)"
" Filter: (comment_index = 1)"
" Rows Removed by Filter: 158057"
" Buffers: shared hit=5226, temp read=48936 written=6835"
" -> Index Scan using esn_dates_esn_id_key on esn_dates ed (cost=0.29..8.32 rows=1 width=20) (actual time=0.019..0.020 rows=1 loops=14)"
" Index Cond: (esn_id = 140339)"
" Filter: ((gate_3_stop_actual AND (gate_3_stop >= now())) OR (gate_3_stop IS NULL) OR ((NOT gate_3_stop_actual) AND (gate_3_stop IS NOT NULL) AND (gate_3_stop >= (now() - '730 days'::interval))))"
" Buffers: shared hit=42"
"Planning time: 6.564 ms"
"Execution time: 988.335 ms"
The actual View definition on which the above select is running
with indexed_comments as (
select
part_comment.part_id,
part_comment.comment,
row_number() over (partition by part_comment.part_id
order by
part_comment.created_at desc) as comment_index
from
moa.part_comment
)
select
e.esn_id,
e.name as esn,
e.is_qp_engine as quarter_point,
w.number as work_order_number,
case
when (p.part_id is null) then 0
else p.part_id
end as part_id,
p.part_number,
p.part_description,
p.quantity,
st.name as status,
p.status_id,
mat.name as material_stream,
p.material_stream_id,
so.name as source,
p.source_id,
p.oem,
p.po_number,
p.manual_cso_commit,
p.auto_cso_commit,
coalesce(p.manual_cso_commit, p.auto_cso_commit) as calculated_cso_commit,
(coalesce(ed.adj_accum_date, (ed.gate_1_stop + coalesce(ed.gate_2_otr, 0)), ed.gate_0_start) + p.accum_offset) as adjusted_accum,
dr.name as dr_status,
p.dr_status_id,
p.airway_bill,
p.core_material,
hpc.hpc_status_name as hpc_status,
p.hpc_status_id,
module.module_name,
p.module_id,
c.name as customer,
c.customer_id,
m.name as model,
m.model_id,
ef.name as engine_family,
ef.engine_family_id,
s.label as site,
s.site_id,
case
when (coalesce(p.manual_cso_commit, p.auto_cso_commit) > coalesce(ed.adj_accum_date, (ed.gate_1_stop + coalesce(ed.gate_2_otr, 0)), ed.gate_0_start)) then 1
else 0
end as critical,
case
when (coalesce(p.manual_cso_commit, p.auto_cso_commit) <= coalesce(ed.adj_accum_date, (ed.gate_1_stop + coalesce(ed.gate_2_otr, 0)), ed.gate_0_start)) then 1
else 0
end as numshort,
case
when ((p.esn_id is not null)
and (coalesce(p.manual_cso_commit, p.auto_cso_commit) is null)) then 1
else 0
end as wa,
ed.adj_accum_date,
(ed.gate_1_stop + coalesce(ed.gate_2_otr, 0)) as g2_otr,
ed.gate_0_start as induct_date,
coalesce((coalesce(ed.adj_accum_date, (ed.gate_1_stop + coalesce(ed.gate_2_otr, 0))) - max(coalesce(p.manual_cso_commit, p.auto_cso_commit))), 0) as delta,
coalesce(ed.adj_accum_date, (ed.gate_1_stop + coalesce(ed.gate_2_otr, 0)), ed.gate_0_start) as fiscal_week_bucket_date,
p.po_line_num,
p.ship_out,
p.receipt,
p.crit_ship,
e.work_scope_id,
ws.name as work_scope,
p.late_call,
p.ex_esn,
p.accum_offset,
ic.comment as latest_comment
from
(((((((((((((((moa.esn e
join moa.work_order w
using (work_order_id))
join moa.model m
using (model_id))
join moa.engine_family ef on
((m.engine_family_id = ef.engine_family_id)))
join moa.site s on
((ef.site_id = s.site_id)))
join moa.customer c
using (customer_id))
left join moa.part p on
(((e.esn_id = p.esn_id)
and (p.active <> false))))
left join moa.work_scope ws on
((e.work_scope_id = ws.work_scope_id)))
left join moa.source so on
((p.source_id = so.source_id)))
left join moa.status st on
((p.status_id = st.status_id)))
left join moa.material_stream mat
using (material_stream_id))
left join moa.dr_status dr
using (dr_status_id))
left join moa.hpc_status hpc
using (hpc_status_id))
left join moa.module module
using (module_id))
left join indexed_comments ic on
(((ic.part_id = p.part_id)
and (ic.comment_index = 1))))
join moa.esn_dates ed on
((e.esn_id = ed.esn_id)))
where
((e.active = true)
and (((ed.gate_3_stop_actual = true)
and (ed.gate_3_stop >= now()))
or (ed.gate_3_stop is null)
or ((ed.gate_3_stop_actual = false)
and (ed.gate_3_stop is not null)
and (ed.gate_3_stop >= (now() - '730 days'::interval)))))
group by
e.esn_id,
w.number,
s.label,
c.name,
p.active,
ed.adj_accum_date,
coalesce(ed.gate_2_otr, 0),
ed.gate_0_start,
ed.gate_1_stop,
p.part_id,
st.name,
mat.name,
so.name,
dr.name,
hpc.hpc_status_name,
module.module_name,
c.customer_id,
m.name,
m.model_id,
ef.name,
ef.engine_family_id,
s.site_id,
ws.name,
ic.comment;
What a horrific query.
Most of the time is going to this:
-> CTE Scan on indexed_comments ic (cost=0.00..5065.85 rows=1126 width=520) (actual time=13.043..61.251 rows=58917 loops=14)"
And the main culprit there is a misestimation of upper sibling node. It thinks it will need to do the CTE Scan one time, but it actually needs to do it 14 times (although apparently returning the same answer each time). If it knew it would do it repeatedly, it would set up a hash table rather than just iterate through it each time. But since setting up the hash requires one iteration through it, it doesn't seem to save anything if it thinks it only needs one iteration in the first place.
I don't know how to fix the estimation problem. But you could compute the ranks on the fly, rather than computing all up front then needing to search through them. You would do that with a LATERAL join.
Change
left join indexed_comments ic on
(((ic.part_id = p.part_id)
and (ic.comment_index = 1))))
to
left join lateral (select comment from part_comment pc where p.part_id=pc.part_id order by created_at desc limit 1) ic on true
and get rid of the with indexed_comments as...
For this to be fast you would need an index ON part_comment (part_id, created_at)
We are using PostgreSQL 9.5.2
We have 11 tables with around average of 10K records in each table
One of the table contains text column for which maximum content size is 12K characters.
When we exclude text column from select statement, it comes in around 5 seconds, and when we include text column, it take around 55 seconds. if we select any other column from same table, it works fine, but as soon as we take text column, performance goes on toss.
All tables are inner joined.
Can you please suggest on how to solve this?
Explain output shows 378ms but in real, it take around 1 minute to get these data.
so when we exclude text column from "ic" table, get result in 4-5 seconds.
"Nested Loop Left Join (cost=4.04..156.40 rows=10 width=616) (actual time=3.092..377.128 rows=24118 loops=1)"
" -> Nested Loop Left Join (cost=3.90..59.92 rows=7 width=603) (actual time=2.834..110.842 rows=14325 loops=1)"
" -> Nested Loop Left Join (cost=3.76..58.56 rows=7 width=604) (actual time=2.832..101.481 rows=12340 loops=1)"
" -> Nested Loop (cost=3.62..57.19 rows=7 width=590) (actual time=2.830..90.614 rows=8436 loops=1)"
" Join Filter: (i."Id" = ic."ImId")"
" -> Nested Loop (cost=3.33..51.42 rows=7 width=210) (actual time=2.807..65.782 rows=8436 loops=1)"
" -> Nested Loop (cost=3.19..50.21 rows=7 width=187) (actual time=2.424..54.596 rows=8436 loops=1)"
" -> Nested Loop (cost=2.77..46.16 rows=7 width=175) (actual time=1.944..32.056 rows=8436 loops=1)"
" -> Nested Loop (cost=2.35..23.66 rows=5 width=87) (actual time=1.750..1.877 rows=4 loops=1)"
" -> Hash Join (cost=2.22..22.84 rows=5 width=55) (actual time=1.492..1.605 rows=4 loops=1)"
" Hash Cond: (i."ImtypId" = it."Id")"
" -> Nested Loop (cost=0.84..21.29 rows=34 width=51) (actual time=1.408..1.507 rows=30 loops=1)"
" -> Nested Loop (cost=0.56..9.68 rows=34 width=35) (actual time=1.038..1.053 rows=30 loops=1)"
" -> Index Only Scan using ev_query on "table_Ev" e (cost=0.28..4.29 rows=1 width=31) (actual time=0.523..0.523 rows=1 loops=1)"
" Index Cond: ("Id" = 1301)"
" Heap Fetches: 0"
" -> Index Only Scan using asmitm_query on "table_AsmItm" ai (cost=0.28..5.07 rows=31 width=8) (actual time=0.499..0.508 rows=30 loops=1)"
" Index Cond: (("AsmId" = e."AsmId") AND ("IsActive" = true))"
" Filter: "IsActive""
" Heap Fetches: 0"
" -> Index Only Scan using itm_query on "table_Itm" i (cost=0.28..0.33 rows=1 width=16) (actual time=0.014..0.014 rows=1 loops=30)"
" Index Cond: ("Id" = ai."ImId")"
" Heap Fetches: 0"
" -> Hash (cost=1.33..1.33 rows=4 width=12) (actual time=0.026..0.026 rows=4 loops=1)"
" Buckets: 1024 Batches: 1 Memory Usage: 9kB"
" -> Seq Scan on "ItmTyp" it (cost=0.00..1.33 rows=4 width=12) (actual time=0.013..0.018 rows=4 loops=1)"
" Filter: ("ParentId" = 12)"
" Rows Removed by Filter: 22"
" -> Index Only Scan using jur_query on "table_Jur" j (cost=0.14..0.15 rows=1 width=36) (actual time=0.065..0.066 rows=1 loops=4)"
" Index Cond: ("Id" = i."JurId")"
" Heap Fetches: 4"
" -> Index Scan using pwsres_evid_ImId_canid_query on "table_PwsRes" p (cost=0.42..3.78 rows=72 width=92) (actual time=0.056..6.562 rows=2109 loops=4)"
" Index Cond: (("EvId" = 1301) AND ("ImId" = i."Id"))"
" -> Index Only Scan using user_query on "table_User" u (cost=0.42..0.57 rows=1 width=16) (actual time=0.002..0.002 rows=1 loops=8436)"
" Index Cond: ("Id" = p."CanId")"
" Heap Fetches: 0"
" -> Index Only Scan using ins_query on "table_Ins" ins (cost=0.14..0.16 rows=1 width=31) (actual time=0.001..0.001 rows=1 loops=8436)"
" Index Cond: ("Id" = u."InsId")"
" Heap Fetches: 0"
" -> Index Scan using "IX_ItmCont_ImId" on "table_ItmCont" ic (cost=0.29..0.81 rows=1 width=392) (actual time=0.002..0.002 rows=1 loops=8436)"
" Index Cond: ("ImId" = p."ImId")"
" Filter: ("ContTyp" = 'CP'::text)"
" Rows Removed by Filter: 1"
" -> Index Scan using "IX_FreDetail_FreId" on "table_FreDetail" f (cost=0.14..0.18 rows=2 width=22) (actual time=0.000..0.001 rows=1 loops=8436)"
" Index Cond: ("FreId" = p."FreId")"
" -> Index Scan using "IX_DurDetail_DurId" on "table_DurDetail" d (cost=0.14..0.17 rows=2 width=7) (actual time=0.000..0.000 rows=0 loops=12340)"
" Index Cond: ("DurId" = p."DurId")"
" -> Index Scan using "IX_DruConsRouteDetail_DruConsRouId" on "table_DruConsRouDetail" dr (cost=0.14..0.18 rows=2 width=21) (actual time=0.001..0.001 rows=1 loops=14325)"
" Index Cond: ("DruConsRouteId" = p."RouteId")"
" SubPlan 1"
" -> Index Only Scan using asm_query on "table_Asm" (cost=0.14..8.16 rows=1 width=26) (actual time=0.001..0.001 rows=1 loops=24118)"
" Index Cond: ("Id" = e."AsmId")"
" Heap Fetches: 24118"
" SubPlan 2"
" -> Seq Scan on "ItmTyp" ity (cost=0.00..1.33 rows=1 width=4) (actual time=0.003..0.003 rows=1 loops=24118)"
" Filter: ("Id" = it."ParentId")"
" Rows Removed by Filter: 25"
"Planning time: 47.056 ms"
"Execution time: 378.229 ms"
If the explain analyze output is taking 378ms, that is how long the query is taking and there's probably not a lot of room for improvement there. If it's taking 1 minute to transfer and load the data, you need to work on that end.
If you're trying to view very wide rows in psql or pgadmin, it can take some time to calculate the row widths or render the html, but that has nothing to do with query performance.