pydev breakpoint when variable changes - pydev

I have Python code that looks like this:
Class X:
def Y()
return None
obj == X()
def Z
obj.Y()
The variable obj is being set to None by some component and I want a breakpoint that will take effect when the value of Obj changes so I can determine what component was involved. Is this possible?

One approach is use #property on the setter for the variable and then trap within that setter.
Search on #property

Related

Using a Lens on a non-case class extending something with a constructor in Scala

I am probably thinking about this the wrong way, but I am having trouble in Scala to use lenses on classes extending something with a constructor.
class A(c: Config) extends B(c) {
val x: String = doSomeProcessing(c, y) // y comes from B
}
I am trying to create a Lens to mutate this class, but am having trouble doing so. Here is what I would like to be able to do:
val l = Lens(
get = (_: A).x,
set = (c: A, xx: String) => c.copy(x = xx) // doesn't work because not a case class
)
I think it all boils down to finding a good way to mutate this class.
What are my options to achieve something like that? I was thinking about this in 2 ways:
Move the initialization logic into a companion A object into a def apply(c: Config), and change the A class to be a case class that gets created from the companion object. Unfortunately I can't extend from B(c) in my object because I only have access to c in its apply method.
Make x a var. Then in the Lens.set just A.clone then set the value of x then return the cloned instance. This would probably work but seems pretty ugly, not to mention changing this to a var might raise a few eyebrows.
Use some reflection magic to do the copy. Not really a fan of this approach if I can avoid it.
What do you think? Am I thinking about this really the wrong way, or is there an easy solution to this problem?
This depends on what you expect your Lens to do. A Lens laws specify that the setter should replace the value that the getter would get, while keeping everything else unchanged. It is unclear what is meant by everything else here.
Do you wish to have the constructor for B called when setting? Do you which the doSomeProcessing method called?
If all your methods are purely functional, then you may consider that the class A has two "fields", c: Config and x: String, so you might as well replace it with a case class with those fields. However, this will cause a problem while trying to implement the constructor with only c as parameter.
What I would consider is doing the following:
class A(val c: Config) extends B(c) {
val x = doSomeProcessing(c, y)
def copy(newX: String) = new A(c) { override val x = newX }
}
The Lens you wrote is now perfectly valid (except for the named parameter in the copy method).
Be careful if you have other properties in A which depend on x, this might create an instance with unexpected values for these.
If you do not wish c to be a property of class A, then you won't be able to clone it, or to rebuild an instance without giving a Config to your builder, which Lenses builder cannot have, so it seems your goal would be unachievable.

Declare a null var in Scala

I have read that null should not be used in scala.
How can I leave myVar uninitialized without the use of null?
class TestClass {
private var myVar: MyClass = null
}
I understand I can just make a dummy MyClass, that is never used in place of the null. But this can and does reduce the code's understandability.
As Rado has explained I can change null as shown below. I understand that I can now check to see if the variable is set during run-time, however, if I don't program that check then there is no benefit of using Option in this case.
Coming from Java, I feel there should be a way to simply leave the var uninitialized at compile-time and let it set during run-time without using the Option class, because as I mentioned above, if I don't code for the unset case then why use Option?
class TestClass {
private var myVar: Option[MyClass] = None
private def createVar() {
myVar = Some(new MyClass)
x: MyClass = myVar.get
}
}
I am thinking the only other way of doing what I am asking is:
class TestClass {
// Using dummy MyClass that will never be used.
private var myVar: MyClass = new MyClass
private def process(myVar: MyClass) {
this.myVar = myVar
myVar.useVarMethod()
}
}
The Scala way is to declare the variable as Option[MyClass]:
class TestClass {
private var myVar: Option[MyClass] = None
private def createVar() {
myVar = Some(new MyClass)
}
// Usage example:
def useMyVar(): Unit = {
myVar match {
case Some(myClass) => {
// Use myClass here ...
println(myClass.toString)
}
case None => // What to do if myVar is undefined?
}
}
}
That way you avoid NullPointerException. You make it explicit that the variable can be in undefined state. Everytime you use the myVar you have to define what to do if it is undefined.
http://www.scala-lang.org/api/current/index.html#scala.Option
I need myVar to be of type MyClass not Option[MyClass]. I see that I
could use Rado's updated answer and then use the get method, but is
there any other way?
When you use Option you can telling the compiler and everyone else who will read/use your code that it's okay not to define this value and the code will handle that condition and not fail at runtime.
The other way of dealing with is to do null checks every time before you access the variable because it could be null and therefore throw an exception at runtime.
When you use Option, the compiler will tell you if at compile time that you have not handled a condition where the value of a variable maybe undefined.
If you think about it, it's really a big deal. you have converted a runtime exception (which is deterministic) to a compile-time error.
If you want to extract the value out of something like an Option (which supports map and also flatMap), then you don't necessarily have to keep doing pattern matching on whether or not the Option contains a value (i.e. is a "Some") or not (i.e. is a "None").
Two methods are very useful - if you want just alter (or "map") the value within the Option then you can use the map method, which takes a function with a general type of:
f: A => B
so in your case at compile time would end up being:
f: MyClass => B
When you map an option, if the option is a "Some" then the contained value is passed through to the mapping function, and the function is applied (to change the MyClass to a B if you like...) and the result is passed back wrapped in an Option. If your Option is a None, then you just get a None back.
Here's a simple example:
scala> case class MyClass(value : String)
defined class MyClass
scala> val emptyOption : Option[MyClass] = None
emptyOption: Option[MyClass] = None
scala> val nonEmptyOption = Some(new MyClass("Some value"))
nonEmptyOption: Option[MyClass] = Some(MyClass(Some value)
Try and extract the value from both option instances using map:
scala> nonEmptyOption map { s => s.value + " mapped" }
res10: Option[String] = Some(Some value mapped)
scala> emptyOption map { s => s.value }
res11: Option[String] = None
So basically, if you map across an empty option, you always get a None. Map across a non-empty Option and you can extract the contained value and transform it and get the result wrapped back in an Option. Notice that you don't need to explicitly check any patterns...the map method takes care of it.
Flatmap is a bit more challenging to explain, but it basically isn't massively different except that it takes a function which has type:
g: A => M[B]
which basically allows you to take the value out of the Option (the 'A' in the type signature above), do something to it (i.e. a computation) and then return the result ('B') - wrapped in another container such as another Option, List...
The same notion (across Option anyway) that if the Option is a None then nothing really happens still applies. flatMap and map form the basis of Scala "for comprehensions" which you can read about (and are done far more justice than I could!!) in lots of other places.

Scala inheritance with a abstract class

I am new to scala, just doing some practice;
I tried a very simple program, briefed as following:
abstract class Device(val cds: Array[Char]) {
var codes = Array[Char](cds: _*)
def encrpt(code: Char): Char
var nextDevice: Device
def setNext(next: Device):Unit = {
nextDevice = next
}
}
//compiler error shows here
class Input(codes: Array[Char]) extends Device(codes) {
override def encrpt(code: Char) = code
}
you could see there is a compiler error at line 21, following is the message:
class Input needs to be abstract, since variable nextDevice in class Device of type com.me.acm.problem1009.Device is not
defined (Note that variables need to be initialized to be defined)
I am pretty confusing that error, my understanding, define some variable and an setter method in the parent class, so the child classes can use it without define it again. it is straight forward.
I guess I missed something. Could someone explain it to me and tell what is the correct way? thanks.
In Scala, variables do not have assumed default values as they do in Java (or many other languages). Thus, when you declare a variable, you must always specify its initial value.
In your code, you declare a variable nextDevice, but you do not give it a value. Since Scala always needs a value, it interprets what you've written as nextDevice being an abstract field, so the compiler is telling you that it must be overridden.
If you change that line to the following, for example, to specify an initial value, then the error will disappear:
var nextDevice: Device = new Input(Array())
As the error message is telling you, the variable nextDevice needs to be initialized in the constructor on Input.
class Input(codes: Array[Char]) extends Device(codes) {
override def encrpt(code: Char) = code
nextDevice = null
}
Note that using null is frowned upon in Scala. You should probably change the type of your variable to Option[Device]

Groovy 'def' keyword and scope problem in Eclipse

I'm following a groovy tutorial and there is a code like this:
def fruit = ["apple", "orange" , "pear"] //list
def likeIt = { String fruit -> println "I like " + fruit + "s" } //closure
fruit.each(likeIt)
Eclipse reports an error at closure definition line:
Line breakpoint:SimpleClosuresTest
[line: 27] The current scope already
contains a variable of the name fruit
# line 27, column 14.
If i omit 'def' from 'def fruit' Eclipse doesn't complaint and code runs fine.
Could someone explain what is going on with the scopes in both cases?
Thanks.
first a general review of a groovy script:
// file: SomeScript.groovy
x = 1
def x = 2
println x
println this.x
is roughly compiled as:
class SomeScript extends groovy.lang.Script {
def x
def run() {
x = 1
def x = 2
println x // 2
println this.x // 1
}
}
in a groovy script (roughly speaking, a file without the class declaration), assigning a value to an undefined variable is interpreted as a field assignment.
your example tries to defines a closure with a parameter named fruit.
if you defined fruit with the def keyword you get an error message because the name is already taken as a local variable, and you can't duplicate a local variable name.
when you leave the def keyword out, you are actually assigning the value to a field of the class generated for the script, and thus the name fruit can be redefined as a local variable.
regarding scopes, it's pretty much like java...
in the example, you can see x is defined first as a field and then as a variable local to the run() method. there's nothing wrong with that and you can access both the variable and the field.
but once you define a local variable, you cannot create duplicates.
edit --
had to add this before anyone gets me wrong: the translation is not exactly like this (thus the "roughly"). Instead of a field you add a value to the binding of the script, quite like args for commandline scripts or request, session or response for groovlets.
but that is much a longer story...
ok if you really want to know just ask again and i'll explain it better
edit 2 --
i just can't leave it like this, if you ever need more info...
every groovy script has a field named binding, an instance of groovy.lang.Binding or one of its a subclasses.
this binding is basically a map, with methods setVariable and setVariable.
when you omit the def keyword when assigning a value in a script you are actually calling the method setVariable, and when you do something like this.x you are calling the getVariable method.
this is actually because class groovy.lang.Script overrides the methods getProperty and setProperty to call those methods first. that's the reason they behave like fields.
you might have also noticed that there is no type associated to those variables... that's because we are dealing with just a Map inside the binding.
standard groovy scrips are created with an instance of a binding with the args set to the array of parameters.
others, like groovy.servlet.ServletBinding define more variables and behavior, like block the assignment of certain variables, or adding a lazy initialization capabilities...
then the real reason behind the error is... if the def keyword is not used, fruits is not a real variable. still, i believe the behavior is somewhat analog to a field.
sorry about all that.
i was not satisfied with my own oversimplification :S
That String fruit shouldn't be having the same name as your def fruit. (you are defining first a list and then a string with the same name)
def likeIt = { String fruit -> println "I like " + fruit + "s" }
In the second case you are defining the type of the variable with def a posteriori, so it works but it is not a good practice as far as I know.
I think that you don't even need to write ->. The groovy manual says that "The -> token is optional and may be omitted if your Closure definition takes fewer than two parameters", which is the case here.
Second line
String fruit
the same variable name 'fruit' is being used again

About Scala's assignments and setter methods

Edit: The bug which prompted this question has now been fixed.
In the Scala Reference, I can read (p. 86):
The interpretation of an assignment to
a simple variable x = e depends on the
definition of x. If x denotes a
mutable variable, then the assignment
changes the current value of x to be
the result of evaluating the
expression e. The type of e is
expected to conform to the type of x.
If x is a parameterless function
defined in some template, and the same
template contains a setter function
x_= as member, then the assignment x =
e is interpreted as the invocation
x_=(e) of that setter function.
Analogously, an assignment f .x = e to
a parameterless function x is
interpreted as the invocation f.x_=(e).
So, for instance, something like this works fine:
class A {
private var _a = 0
def a = _a
def a_=(a: Int) = _a = a
}
I can then write
val a = new A
a.a = 10
But if I define the class like this, adding a type parameter to method a:
class A {
private var _a = 0
def a[T] = _a
def a_=(a: Int) = _a = a
}
then it doesn't work any more; I get an error: reassignment to val if I write a.a = 10. Funny enough, it still works with no type parameter and an implicit parameter list, for instance.
Arguably, in this example, the type parameter is not very useful, but in the design of DSLs, it would be great to have the setter method called even if the getter has type parameters (and by the way, adding type parameters on the setter is allowed and works fine).
So I have three questions:
Is there a workaround?
Should the current behavior be considered a bug?
Why does the compiler enforce a getter method to allow using the syntactic sugar for the setter?
UPDATE
Here's what I'm really trying to do. It's rather long, sorry, I meant to avoid it but I realized it was more confusing to omit it.
I'm designing GUIs with SWT in Scala, and having huge fun using Dave Orme's XScalaWT, which immensely reduces the amount of needed code. Here's an example from his blog post on how to create an SWT Composite that converts °C to °F degrees:
var fahrenheit: Text = null
var celsius: Text = null
composite(
_.setLayout(new GridLayout(2, true)),
label("Fahrenheit"),
label("Celsius"),
text(fahrenheit = _),
text(celsius = _),
button(
"Fahrenheit => Celsius",
{e : SelectionEvent => celcius.setText((5.0/9.0) * (fahrenheit - 32)) }
),
button(
"Celsius -> Fahrenheit",
{e : SelectionEvent => fahrenheit.setText((9.0/5.0) * celsius + 32) })
)
)
The argument to each of the widget-constructing methods is of type (WidgetType => Any)*, with a few useful implicit conversions, which for instance allow to directly specify a string for widgets that have a setText() method. All constructor functions are imported from a singleton object.
In the end, I'd like to be able to write something along these lines:
val fieldEditable = new WritableValue // observable value
composite(
textField(
editable <=> fieldEditable,
editable = false
),
checkbox(
caption = "Editable",
selection <=> fieldEditable
)
)
This would bind the editable property of the textfield to the selection of the checkbox through the WritableValue variable.
First: named arguments are not applicable here, so the line editable = false has to come from somewhere. So, along the widget-constructing methods in the singleton object, I could write, conceptually,
def editable_=[T <: HasEditable](value: Boolean) = (subject: T) => subject.setEditable(value)
... but this works only if the getter is also present. Great: I'd need the getter anyway in order to implement databinding with <=>. Something like this:
def editable[T <: HasEditable] = new BindingMaker((widget: T) => SWTObservables.observeEditable(widget))
If this worked, life would be good because I can then define <=> in BindingMaker and I can use this nice syntax. But alas, the type parameter on the getter breaks the setter. Hence my original question: why would this simple type parameter affect whether the compiler decides to go ahead with the syntactic sugar for calling the setter?
I hope this makes it a bit clearer now. Thanks for reading…
UPDATE Deleted the entire previous answer in light of new information.
There's a lot of very odd stuff going on here, so I'm going try try and explain my understanding of what you have so far:
def editable_=[T <: HasEditable](value: Boolean) = (subject: T) => subject.setEditable(value)
This is a setter method, and exists purely so that it can give the appearance of beinng a named parameter
in your DSL. It sets nothing and actually returns a Function.
textField(
editable <=> fieldEditable,
editable = false
)
This is calling the textField factory method, with what looks like a named param, but is actually the setter method defined previously.
Amazingly, the approach seems to work, despite my initial concern that the compiler would recognize this as a named parameter and produce a syntax error. I tested it with simple monomorphic (non-generic) methods, though it does require the getter method to be defined for the setter to be seen as such - a fact that you've already noted.
Some amount of "cleverness" is often required in writing a DSL (where it would otherwise be totally forbidden), so it's no surprise that your original intent was unclear. This is perhaps a completely new technique never before seen in Scala. The rules for setter and getter definitions were based on using them as getters and setters, so don't be surprised if things crack a little when you push at the boundaries like this.
It seems the real problem here is the way you're using type params. In this expression:
def editable_=[T <: HasEditable](value: Boolean) = (subject: T) => subject.setEditable(value)
The compiler has no way of inferring a particular T from the supplied argument, so it will take the most general type allowed (HasEditable in this case). You could change this behaviour by explicitly supplying a type param when using the method, but that would seem to defeat the entire point of what you're seeking to achieve.
Given that functions can't be generic (only methods can), I doubt that you even want type bounds at all. So one approach you could try is to just drop them:
def editable_=(value: Boolean) = (subject: HasEditable) => subject.setEditable(value)
def editable = new BindingMaker((widget: HasEditable) => SWTObservables.observeEditable(widget))