Postgres Create Index command hangs - postgresql

This is similar to a recent problem I posted where COPY command was hanging for a large data set. In that instance, it was due to a foreign key constraint. But in this case I'm creating an index, so I would think an FK wouldn't be an issue, even though I still disabled triggers on the table just in case. I'm trying to add a regular btree index on a table with 10 billion rows. The index is on two int fields. I tried running it and it was going forever, so I thought it might just be too slow, I increased max_parallel_maintenance_workers to 8 and maintenance_work_mem to 2047MB (I'm on Windows, so it's the max).
At that point, things seemed to go faster, but the same problem happened: I can see the files growing in the pgsql_tmp/pgsql_tmpxxxx.x.sharedfileset folder, until they just stop but the index creation never seems to finish.
I wondered if I'd set too many workers for whatever reason, so I tried setting it to 4, same problem. Files were last modified around 3:20am, it's 7:35am and it's still running. The files in the folder are 261GB, which looks about right compared to the table size and every time I run the process it stalls at that size, so I assume it's done with creating the index, I just have no clue what it might be doing at this point. In case it matters, the table has a foreign key on another table that has 1 billion records, but the triggers are disabled on the table, which has worked for me in loading data in the table. I checked for locks, there are none, it's not waiting on any lock, which makes sense because this is a test database with dummy data that I created to test some things, so nobody else even knows it exists or has any use for it.

Creating an index runs in several stages. The table has to be read, the values have to be sorted, and the index has to be created on disk.
In certain stages you will see temporary files growing, in others not, even though CREATE INDEX is still working. Perhaps it is writing the index file at the moment.
So be patient, it will finish.
If you are nervous look into pg_locks to see if the CREATE INDEX is blocked by something. That may be the case if it is a CREATE INDEX CONCURRENTLY, which has do do more complicated processing.

Related

TSQL Lock behaviour on Index Creation/Partition Switch

I currently have the use case of inserting lots of Data (3.5Mio Rows, somewhere around 200GB) into multiple Staging Tables and then switching them into the destination-Tables. Now, becaufe of the amount of Data, we discovered that it would be faster to insert the data into an empty heap-table, then creating the columnstore index so the structure is identical to the destination table, and then switching - all within one transaction.
All the Tables are in the same Database, but they do not depend on each other, so the best-case would be to fill table A-Stage and B-Stage at the same time, create the corresponding indices on them at the same time, and then switching them at the same time.
Obviously, with Creating Indices and Switching Partitions, there are plenty of locks involved. Now i was curious whether those locks can cause a deadlock at any point, especially when it comes to sys-Tables.
All Tables involved will get a SCH-M lock, and certain sys Tables will also get locked, but from what i can see, they get locked on PAGE/KEY/EXTENT level.
Now i guess my Question is:
Are the sys-Tables and other structures i might miss stored in a way that i can alter indices/partitions without running into locks, as long as those are different tables/objects that do not depend on each other (no Foreign Keys or anything for example) or will i eventually run into a scenario where Table B has to wait for Table A to finish before even starting, or worse, a deadlock?
Thanks in advance!
Tried Creating a Clustered Columnstore Index/Switching Partitons and saw that certain sys-Objects couldn´t be accessed, wondered whether this will cause locks in the future or if the locks for different objects will always work out

What about expected performance in Pentaho?

I am using Pentaho to create ETL's and I am very focused on performance. I develop an ETL process that copy 163.000.000 rows from Sql server 2088 to PostgreSQL and it takes 17h.
I do not know how good or bad is this performance. Do you know how to measure if the time that takes some process is good? At least as a reference to know if I need to keep working heavily on performance or not.
Furthermore, I would like to know if it is normal that in the first 2 minutes of ETL process it load 2M rows. I calculate how long will take to load all the rows. The expected result is 6 hours, but then the performance decrease and it takes 17h.
I have been investigating in goole and I do not find any time references neither any explanations about performance.
Divide and conquer, and proceed by elimination.
First, add a LIMIT to your query so it takes 10 minutes instead of 17 hours, this will make it a lot easier to try different things.
Are the processes running on different machines? If so, measure network bandwidth utilization to make sure it isn't a bottleneck. Transfer a huge file, make sure the bandwidth is really there.
Are the processes running on the same machine? Maybe one is starving the other for IO. Are source and destination the same hard drive? Different hard drives? SSDs? You need to explain...
Examine IO and CPU usage of both processes. Does one process max out one cpu core?
Does a process max out one of the disks? Check iowait, iops, IO bandwidth, etc.
How many columns? Two INTs, 500 FLOATs, or a huge BLOB with a 12 megabyte PDF in each row? Performance would vary between these cases...
Now, I will assume the problem is on the POSTGRES side.
Create a dummy table, identical to your target table, which has:
Exact same columns (CREATE TABLE dummy LIKE table)
No indexes, No constraints (I think it is the default, double check the created table)
BEFORE INSERT trigger on it which returns NULL and drop the row.
The rows will be processed, just not inserted.
Is it fast now? OK, so the problem was insertion.
Do it again, but this time using an UNLOGGED TABLE (or a TEMPORARY TABLE). These do not have any crash-resistance because they don't use the journal, but for importing data it's OK.... if it crashes during the insert you're gonna wipe it out and restart anyway.
Still No indexes, No constraints. Is it fast?
If slow => IO write bandwidth issue, possibly caused by something else hitting the disks
If fast => IO is OK, problem not found yet!
With the table loaded with data, add indexes and constraints one by one, find out if you got, say, a CHECK that uses a slow SQL function, or a FK into a table which has no index, that kind of stuff. Just check how long it takes to create the constraint.
Note: on an import like this you would normally add indices and constraints after the import.
My gut feeling is that PG is checkpointing like crazy due to the large volume of data, due to too-low checkpointing settings in the config. Or some issue like that, probably random IO writes related. You put the WAL on a fast SSD, right?
17H is too much. Far too much. For 200 Million rows, 6 hours is even a lot.
Hints for optimization:
Check the memory size: edit the spoon.bat, find the line containing -Xmx and change it to half your machine memory size. Details varies with java version. Example for PDI V7.1.
Check if the query from the source database is not too long (because too complex, or server memory size, or ?).
Check the target commit size (try 25000 for PostgresSQL), the Use batch update for inserts in on, and also that the index and constraints are disabled.
Play with the Enable lazy conversion in the Table input. Warning, you may produce difficult to identify and debug errors due to data casting.
In the transformation property you can tune the Nr of rows in rowset (click anywhere, select Property, then the tab Miscelaneous). On the same tab check the transformation is NOT transactional.

delete temporary files in postgresql

I have a huge database of about 800GB. When I tried to run a query which groups certain variables and aggregates the result, it was stopping after running for a couple of hours. Postgres was throwing a message that disk space is full. After looking at the statistics I realized that the dB has about 400GB of temporary files. I believe these temp files where created while I was running the query. My question is how do I delete these temp files. Also, how do I avoid such problems - use cursors or for-loops to not process all the data at once? Thanks.
I'm using Postgres 9.2
The temporary files that get created in base/pgsql_tmp during query execution will get deleted when the query is done. You should not delete them by hand.
These files have nothing to do with temporary tables, they are use to store data for large hash or sort operations that would not fit in work_mem.
Make sure that the query is finished or canceled, try running CHECKPOINT twice in a row and see if the files are still there. If yes, that's a bug; did the PostgreSQL server crash when it ran out of disk space?
If you really have old files in base/pgsql_tmp that do not get deleted automatically, I think it is safe to delete them manually. But I'd file a bug with PostgreSQL in that case.
There is no way to avoid large temporary files if your execution plan needs to sort large result sets or needs to create large hashes. Cursors won't help you there. I guess that with for-loops you mean moving processing from the database to application code – doing that is usually a mistake and will only move the problem from the database to another place where processing is less efficient.
Change your query so that it doesn't have to sort or hash large result sets (check with EXPLAIN). I know that does not sound very helpful, but there's no better way. You'll probably have to do that anyway, or is a runtime of several hours acceptable for you?

PostgreSQL - When do indices get build and when to use CONCURRENTLY?

I'm fairly inexperienced with SQL (or here PostgreSQL) and I'm trying to understand and use indices correctly.
PostgreSQL has a CONCURRENTLY option for CREATE INDEX and the documentation says:
"When this option is used, PostgreSQL must perform two scans of the table, and in addition it must wait for all existing transactions that could potentially use the index to terminate. Thus this method requires more total work than a standard index build and takes significantly longer to complete. However, since it allows normal operations to continue while the index is built, this method is useful for adding new indexes in a production environment."
Does this mean that an INDEX is only created at startup or during a migration process?
I know that one can re-index tables if they get fragmented over time (not sure how this actually happens and why an index is just not kept "up-to-date") and that re-indexing helps the database to get more efficient again.
Can I benefit from CONCURRENTLY during such a re-index process?
and besides that I'm asking myself
Are there situation where I should avoid CONCURRENTLY or would it hurt to use CONCURRENTLY just on every INDEX I create?
If it was sensible to always create index ... concurrently it'd be the default.
What it does is builds the index with weaker locks held on the table being indexed, so you can continue to insert, update, delete, etc.
This comes at a price:
You can't use create index ... concurrently in a transaction, unlike almost all other DDL
The index build can take longer
The index built may be less efficiently laid out (slower, bigger)
Rarely, the create index can fail, so you have to drop and recreate the index
You can't easily use this to re-create an existing index. PostgreSQL doesn't yet support reindex ... concurently. There are workarounds where you create a new index, then swap old and new indexes, but it's very difficult if you're trying to do it for a unique index or primary key that's the target of a foreign key constraint.
Unless you know you need it, just use create index without concurrently.

Postgresql Truncation speed

We're using Postgresql 9.1.4 as our db server. I've been trying to speed up my test suite so I've stared profiling the db a bit to see exactly what's going on. We are using database_cleaner to truncate tables at the end of tests. YES I know transactions are faster, I can't use them in certain circumstances so I'm not concerned with that.
What I AM concerned with, is why TRUNCATION takes so long (longer than using DELETE) and why it takes EVEN LONGER on my CI server.
Right now, locally (on a Macbook Air) a full test suite takes 28 minutes. Tailing the logs, each time we truncate tables... ie:
TRUNCATE TABLE table1, table2 -- ... etc
it takes over 1 second to perform the truncation. Tailing the logs on our CI server (Ubuntu 10.04 LTS), take takes a full 8 seconds to truncate the tables and a build takes 84 minutes.
When I switched over to the :deletion strategy, my local build took 20 minutes and the CI server went down to 44 minutes. This is a significant difference and I'm really blown away as to why this might be. I've tuned the DB on the CI server, it has 16gb system ram, 4gb shared_buffers... and an SSD. All the good stuff. How is it possible:
a. that it's SO much slower than my Macbook Air with 2gb of ram
b. that TRUNCATION is so much slower than DELETE when the postgresql docs state explicitly that it should be much faster.
Any thoughts?
This has come up a few times recently, both on SO and on the PostgreSQL mailing lists.
The TL;DR for your last two points:
(a) The bigger shared_buffers may be why TRUNCATE is slower on the CI server. Different fsync configuration or the use of rotational media instead of SSDs could also be at fault.
(b) TRUNCATE has a fixed cost, but not necessarily slower than DELETE, plus it does more work. See the detailed explanation that follows.
UPDATE: A significant discussion on pgsql-performance arose from this post. See this thread.
UPDATE 2: Improvements have been added to 9.2beta3 that should help with this, see this post.
Detailed explanation of TRUNCATE vs DELETE FROM:
While not an expert on the topic, my understanding is that TRUNCATE has a nearly fixed cost per table, while DELETE is at least O(n) for n rows; worse if there are any foreign keys referencing the table being deleted.
I always assumed that the fixed cost of a TRUNCATE was lower than the cost of a DELETE on a near-empty table, but this isn't true at all.
TRUNCATE table; does more than DELETE FROM table;
The state of the database after a TRUNCATE table is much the same as if you'd instead run:
DELETE FROM table;
VACCUUM (FULL, ANALYZE) table; (9.0+ only, see footnote)
... though of course TRUNCATE doesn't actually achieve its effects with a DELETE and a VACUUM.
The point is that DELETE and TRUNCATE do different things, so you're not just comparing two commands with identical outcomes.
A DELETE FROM table; allows dead rows and bloat to remain, allows the indexes to carry dead entries, doesn't update the table statistics used by the query planner, etc.
A TRUNCATE gives you a completely new table and indexes as if they were just CREATEed. It's like you deleted all the records, reindexed the table and did a VACUUM FULL.
If you don't care if there's crud left in the table because you're about to go and fill it up again, you may be better off using DELETE FROM table;.
Because you aren't running VACUUM you will find that dead rows and index entries accumulate as bloat that must be scanned then ignored; this slows all your queries down. If your tests don't actually create and delete all that much data you may not notice or care, and you can always do a VACUUM or two part-way through your test run if you do. Better, let aggressive autovacuum settings ensure that autovacuum does it for you in the background.
You can still TRUNCATE all your tables after the whole test suite runs to make sure no effects build up across many runs. On 9.0 and newer, VACUUM (FULL, ANALYZE); globally on the table is at least as good if not better, and it's a whole lot easier.
IIRC Pg has a few optimisations that mean it might notice when your transaction is the only one that can see the table and immediately mark the blocks as free anyway. In testing, when I've wanted to create bloat I've had to have more than one concurrent connection to do it. I wouldn't rely on this, though.
DELETE FROM table; is very cheap for small tables with no f/k refs
To DELETE all records from a table with no foreign key references to it, all Pg has to do a sequential table scan and set the xmax of the tuples encountered. This is a very cheap operation - basically a linear read and a semi-linear write. AFAIK it doesn't have to touch the indexes; they continue to point to the dead tuples until they're cleaned up by a later VACUUM that also marks blocks in the table containing only dead tuples as free.
DELETE only gets expensive if there are lots of records, if there are lots of foreign key references that must be checked, or if you count the subsequent VACUUM (FULL, ANALYZE) table; needed to match TRUNCATE's effects within the cost of your DELETE .
In my tests here, a DELETE FROM table; was typically 4x faster than TRUNCATE at 0.5ms vs 2ms. That's a test DB on an SSD, running with fsync=off because I don't care if I lose all this data. Of course, DELETE FROM table; isn't doing all the same work, and if I follow up with a VACUUM (FULL, ANALYZE) table; it's a much more expensive 21ms, so the DELETE is only a win if I don't actually need the table pristine.
TRUNCATE table; does a lot more fixed-cost work and housekeeping than DELETE
By contrast, a TRUNCATE has to do a lot of work. It must allocate new files for the table, its TOAST table if any, and every index the table has. Headers must be written into those files and the system catalogs may need updating too (not sure on that point, haven't checked). It then has to replace the old files with the new ones or remove the old ones, and has to ensure the file system has caught up with the changes with a synchronization operation - fsync() or similar - that usually flushes all buffers to the disk. I'm not sure whether the the sync is skipped if you're running with the (data-eating) option fsync=off .
I learned recently that TRUNCATE must also flush all PostgreSQL's buffers related to the old table. This can take a non-trivial amount of time with huge shared_buffers. I suspect this is why it's slower on your CI server.
The balance
Anyway, you can see that a TRUNCATE of a table that has an associated TOAST table (most do) and several indexes could take a few moments. Not long, but longer than a DELETE from a near-empty table.
Consequently, you might be better off doing a DELETE FROM table;.
--
Note: on DBs before 9.0, CLUSTER table_id_seq ON table; ANALYZE table; or VACUUM FULL ANALYZE table; REINDEX table; would be a closer equivalent to TRUNCATE. The VACUUM FULL impl changed to a much better one in 9.0.
Brad, just to let you know. I've looked fairly deeply into a very similar question.
Related question: 30 tables with few rows - TRUNCATE the fastest way to empty them and reset attached sequences?
Please also look at this issue and this pull request:
https://github.com/bmabey/database_cleaner/issues/126
https://github.com/bmabey/database_cleaner/pull/127
Also this thread: http://archives.postgresql.org/pgsql-performance/2012-07/msg00047.php
I am sorry for writing this as an answer, but I didn't find any comment links, maybe because there are too much comments already there.
I've encountered similar issue lately, i.e.:
The time to run test suite which used DatabaseCleaner varied widely between different systems with comparable hardware,
Changing DatabaseCleaner strategy to :deletion provided ~10x improvement.
The root cause of the slowness was a filesystem with journaling (ext4) used for database storage. During TRUNCATE operation the journaling daemon (jbd2) was using ~90% of disk IO capacity. I am not sure if this is a bug, an edge case or actually normal behaviour in these circumstances. This explains however why TRUNCATE was a lot slower than DELETE - it generated a lot more disk writes. As I did not want to actually use DELETE I resorted to setting fsync=off and it was enough to mitigate this issue (data safety was not important in this case).
A couple of alternate approaches to consider:
Create a empty database with static "fixture" data in it, and run the tests in that. When you are done, just just drop the database, which should be fast.
Create a new table called "test_ids_to_delete" that contains columns for table names and primary key ids. Update your deletion logic to insert the ids/table names in this table instead, which will be much faster than running deletes. Then, write a script to run "offline" to actually delete the data, either after a entire test run has finished, or overnight.
The former is a "clean room" approach, while latter means there will be some test data will persist in database for longer. The "dirty" approach with offline deletes is what I'm using for a test suite with about 20,000 tests. Yes, there are sometimes problems due to having "extra" test data in the dev database but at times. But sometimes this "dirtiness" has helped us find and fixed bug because the "messiness" better simulated a real-world situation, in a way that clean-room approach never will.