I have two datasets that i need to join and perform operations on and I cant figure out how to do it.
A stipulation for this is that i do not have org.apache.spark.sql.functions methods available to me, so must use the dataset API
The input given is two Datasets
The first dataset is of type Customer with Fields:
customerId, forename, surname - All String
And the second dataset is of Transaction:
customerId (String), accountId(String), amount (Long)
customerId is the link
The outputted Dataset needs to have these fields:
customerId (String), forename(String), surname(String), transactions( A list of type Transaction), transactionCount (int), totalTransactionAmount (Double),averageTransactionAmount (Double)
I understand that i need to use groupBy, agg, and some kind of join at the end.
Can anyone help/point me in the right direction? Thanks
It is very hard to work with the information you have, but from what I understand you dont want to use the dataframe functions but implement everything with the dataset api, you could do this in the following way
Join both the datasets using joinWith, you can find an example here https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-joins.html#joinWith
Aggregating : I would use groupByKey followed by mapGroups something like
ds.groupByKey(x=>x.id).mapGroups { case (key,iter) => {
val list = iter.toList
val totalTransactionAmount = ???
val averageTransactionAmount = ???
(key,totalTransactionAmount,averageTransactionAmount)
}
}
Hopefully the example gives you an idea how you could solve your problem with the dataset API and you could adapt it to your problem.
Related
Suppose I have a Spark dataframe called trades which has in its schema a few columns, some dimensions (let's say Product and Type) and some facts (let's say Price and Volume).
Rows in the dataframe which have the same dimension columns belong logically to the same group.
What I need is to map each dimension set (Product, Type) to a numeric value, so to obtain in the end a dataframe stats which has as many rows as the distinct number of dimensions and a value - this is the critical part - which is obtained from all the rows in trades of that (Product, Type) and which must be computed sequentially in order, because the function applied row by row is neither associative nor commutative, and it cannot be parallelized.
I managed to handle the sequential function I need to apply to each subset by repartitioning to 1 single chunk each dataframe and sorting the rows, so to get exactly what I need.
The thing I am struggling with is how to do the map from trades to stats as a Spark job: in my scenario master is remote and can leverage multiple executors, while the deploy mode is local and local machine is poorly equipped.
So I don't want to do looping over the driver, but push it down to the cluster.
If this was not Spark, I'd have done something like:
val dimensions = trades.select("Product", "Type").distinct()
val stats = dimensions.map( row =>
val product = row.getAs[String]("Product")
val type = row.getAs[String]("Type")
val inScope = col("Product") === product and col("Type") === type
val tradesInScope = trades.filter(inScope)
Row(product, type, callSequentialFunction(tradesInScope))
)
This seemed fine to me, but it's absolutely not working: I am trying to do a nested call on trades, and it seem they are not supported. Indeed, when running this the spark job compile but when actually performing an action I get a NullPointerException because the dataframe trades is null within the map
I am new to Spark, and I don't know any other way of achieving the same intent in a valid way. Could you help me?
you get a NullpointerExecptionbecause you cannot use dataframes within executor-side code, they only live on the driver.Also, your code would not ensure thatcallSequentialFunction will be called sequentially, because map on a dataframe will run in parallel (if you have more than 1 partition). What you can do is something like this:
val dimensions = trades.select("Product", "Type").distinct().as[(String,String)].collect()
val stats = dimensions.map{case (product,type) =>
val inScope = col("Product") === product and col("Type") === type
val tradesInScope = trades.filter(inScope)
(product, type, callSequentialFunction(tradesInScope))
}
But note that the order in dimensionsis somewhat arbitrary, so you should sort dimensionsaccording to your needs
I am reading a csv as a Data Frame by below:
val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").load("D:/ModelData.csv")
Then I group by three columns as below which returns a RelationalGroupedDataset
df.groupBy("col1", "col2","col3")
And I want each grouped data frame to be send through the below function
def ModelFunction(daf: DataFrame) = {
//do some calculation
}
For example if I have col1 having 2 unique (0,1) values and col2 having 2 unique values(1,2) and col3 having 3 unique values(1,2,3) Then i would like to pass each combination grouping to the Model function Like for col1=0 ,col2=1,col3=1 I will havea dataframe and I want to pass that to the ModelFunction and so on for each combination of the three columns.
I tried
df.groupBy("col1", "col2","col3").ModelFunction();
But it throw an error.
.
Any help is appreciated.
The short answer is that you cannot do that. You can only do aggregate functions on RelationalGroupedDataset (either ones you write as UDAF or built in ones in org.apache.spark.sql.functions)
The way I see it you have several options:
Option 1: The amount of data for each unique combination is small enough and not skewed too much compared to other combinations.
In this case you can do:
val grouped = df.groupBy("col1", "col2","col3").agg(collect_list(struct(all other columns)))
grouped.as[some case class to represent the data including the combination].map[your own logistic regression function).
Option 2: If the total number of combinations is small enough you can do:
val values: df.select("col1", "col2", "col3").distinct().collect()
and then loop through them creating a new dataframe from each combination by doing a filter.
Option 3: Write your own UDAF
This would probably not be good enough as the data comes in a stream without the ability to do iteration, however, if you have an implemenation of logistic regression which matches you can try to write a UDAF to do this. See for example: How to define and use a User-Defined Aggregate Function in Spark SQL?
I have a large DataFrame (Spark 1.6 Scala) which looks like this:
Type,Value1,Value2,Value3,...
--------------------------
A,11.4,2,3
A,82.0,1,2
A,53.8,3,4
B,31.0,4,5
B,22.6,5,6
B,43.1,6,7
B,11.0,7,8
C,22.1,8,9
C,3.2,9,1
C,13.1,2,3
From this I want to group by Type and apply machine learning algorithms and/or perform complex functions on each group.
My objective is perform complex functions on each group in parallel.
I have tried the following approaches:
Approach 1) Convert Dataframe to Dataset and then use ds.mapGroups() api. But this is giving me an Iterator of each group values.
If i want to perform RandomForestClassificationModel.transform(dataset: DataFrame), i need a DataFrame with only a particular group values.
I was not sure converting Iterator to a Dataframe within mapGroups is a good idea.
Approach 2) Distinct on Type, then map on them and then filter for each Type with in the map loop:
val types = df.select("Type").distinct()
val ff = types.map(row => {
val type = row.getString(0)
val thisGroupDF = df.filter(col("Type") == type)
// Apply complex functions on thisGroupDF
(type, predictedValue)
})
For some reason, the above is never completing (seems to be getting into some kind of infinite loop)
Approach 3) Exploring Window functions, but did not find a method which can provide dataframe of particular group values.
Please help.
I have a difficulty when working with data frames in spark with Scala. If I have a data frame that I want to extract a column of unique entries, when I use groupBy I don't get a data frame back.
For example, I have a DataFrame called logs that has the following form:
machine_id | event | other_stuff
34131231 | thing | stuff
83423984 | notathing | notstuff
34131231 | thing | morestuff
and I would like the unique machine ids where event is thing stored in a new DataFrame to allow me to do some filtering of some kind. Using
val machineId = logs
.where($"event" === "thing")
.select("machine_id")
.groupBy("machine_id")
I get a val of Grouped Data back which is a pain in the butt to use (or I don't know how to use this kind of object properly). Having got this list of unique machine id's, I then want to use this in filtering another DataFrame to extract all events for individual machine ids.
I can see I'll want to do this kind of thing fairly regularly and the basic workflow is:
Extract unique id's from a log table.
Use unique ids to extract all events for a particular id.
Use some kind of analysis on this data that has been extracted.
It's the first two steps I would appreciate some guidance with here.
I appreciate this example is kind of contrived but hopefully it explains what my issue is. It may be I don't know enough about GroupedData objects or (as I'm hoping) I'm missing something in data frames that makes this easy. I'm using spark 1.5 built on Scala 2.10.4.
Thanks
Just use distinct not groupBy:
val machineId = logs.where($"event"==="thing").select("machine_id").distinct
Which will be equivalent to SQL:
SELECT DISTINCT machine_id FROM logs WHERE event = 'thing'
GroupedData is not intended to be used directly. It provides a number of methods, where agg is the most general, which can be used to apply different aggregate functions and convert it back to DataFrame. In terms of SQL what you have after where and groupBy is equivalent to something like this
SELECT machine_id, ... FROM logs WHERE event = 'thing' GROUP BY machine_id
where ... has to be provided by agg or equivalent method.
A group by in spark followed by aggregation and then a select statement will return a data frame. For your example it should be something like:
val machineId = logs
.groupBy("machine_id", "event")
.agg(max("other_stuff") )
.select($"machine_id").where($"event" === "thing")
I have grouped all my customers in JavaPairRDD<Long, Iterable<ProductBean>> by there customerId (of Long type). Means every customerId have a List or ProductBean.
Now i want to save all ProductBean to DB irrespective of customerId. I got all values by using method
JavaRDD<Iterable<ProductBean>> values = custGroupRDD.values();
Now i want to convert JavaRDD<Iterable<ProductBean>> to JavaRDD<Object, BSONObject> so that i can save it to Mongo. Remember, every BSONObject is made of Single ProductBean.
I am not getting any idea of how to do this in Spark, i mean which Spark's Transformation is used to do that job. I think this task is some kind of seperate all values from Iterable. Please let me know how is this possible.
Any hint in Scala or Python are also ok.
You can use the flatMapValues function:
JavaRDD<Object,ProductBean> result = custGroupRDD.flatMapValues(v -> v)