Can you feed OR-tools solver external data inbetween different solutions it finds? - or-tools

I'm trying to solve a complex variant of a min-SAT problem. So far in the process I have two subproblems, both giving solution values that need to be considered in the objective function. However, only one of the two problems do I solve with the OR-tools cp_model module. The other is solved by an external algorithm. Now, ideally I would do the following:
cp-solver findes a solution to the first subproblem,
pause the solver,
solve the second subproblem with an external algorithm, taking as argument the solution found by the cp-solver,
feed the result of the external algorithm back to the cp-solver,
cp-solver now considers as the objective value the sum of the solution it itself found to first subproblem and the solution that was found by the external algorithm,
cp-solver goes to the next iteration and repeats steps 1-6 for a new assignment
So my question is: is there a functionality for Google OR-tools that lets me do something like steps 1-6 where the solver runs in cooperation with external algorithms and is fed values accordingly? I'm new to using this module so I'm unaware of what terms I could search for on Google to find what I need. Thanks a lot my friends. Best regards, 30centimeter.

In the cp-sat solver, solve() is stateless and a black box.
The only thing you can do is modify the model and resolve.

Related

OR-Tools optimization eith CP-Sat

I'm solving an optimization problem in python with OR-Tools / CP-sat solver. I'm using a file that takes some hours to reach optimal solution. Is there any way of seeing in the terminal how the process is going, like the best solution found so far, the elapsed time, etc...? I know that with cplex solver we can see this.
Thank you
First, you need to add log_search_progress:true to the parameters.
Second, a good way to speed solving it to use multiple workers. This is done by using the num_search_workers:XXX parameter. If you have a decent machine, XXX=8 is good. If you have a beefier machine, you can try XXX=12 or 16 (or more).

Using Gurobi to run a MIQP: how can I improve time performance?

I am using Gurobi to run a MIQP (Mixed Integer Quadratic Programming) with linear constraints in Matlab. The solver is very slow and I would like your help to understand whether I can do something about it.
These are the lines which I use to launch the problem
clear model;
clear params;
model.A=[Aineq; Aeq];
model.rhs=[bineq; beq];
model.sense=[repmat('<', size(Aineq,1),1); repmat('=', size(Aeq,1),1)];
model.Q=Q;
model.obj=c;
model.vtype=type;
model.lb=total_lb;
model.ub=total_ub;
params.MIPGap=10^(-1);
result=gurobi(model,params);
This is a screenshot of the output in the Matlab window.
Question 1: It is the first time I am trying to run a MIQP and I would like to have your advice to understand what I can do to improve performance. Let me tell what I have tried so far:
I cheated by imposing params.MIPGap=10^(-1). In this way the phase of node exploration is made shorter. What are the cons of doing this?
I have big-M coefficients and I have tied them to the smallest possible values.
I have tried setting params.ScaleFlag=2; params.ObjScale=2 but it makes things slower
I have changed params.method but it does not seem to help (unless you have some specific recommendation)
I have increase params.Threads but it does not seem to help
Question 2 (minor): Why do I get a negative objective in the root simplex log? How can the objective function be negative?
Without having the full model here, there is not much on advise to give. Tight Big-M formulations are important, but you said, you checked them already. Sometimes splitting them up might help, but this is a complex field.
What might give great benefits for some problems is using the Gurobi parameter tuning tool. So try to export your model and feed the tuning tool with it. It automatically tries different of the hundreds of tuning parameters and might give some nice results.
Regarding the question about negative objectives in the simplex logs, I can think of a couple of possible explanations. First, note that the negative objective values occur in the presence of dual infeasibilities in the dual simplex run. In such a case, I'm not sure exactly what the primal objective values correspond to. Second, if you have a MIQP with products of binaries in the objective, Gurobi may convexify the objective in a way that makes it possible for a negative objective to appear in the reformulated model even when the original model must have a nonnegative objective in any feasible solution.

matlab running all linprog algortithms (is there a matlab-list of algorithms?)

Matlab offers multiple algorithms for solving Linear Programs.
For example Matlab R2012b offers: 'active-set', 'trust-region-reflective', 'interior-point', 'interior-point-convex', 'levenberg-marquardt', 'trust-region-dogleg', 'lm-line-search', or 'sqp'.
But other versions of Matlab support different algorithms.
I would like to run a loop over all algorithms that are supported by the users Matlab-Version. And I would like them to be ordered like the recommendation order of Matlab.
I would like to implement something like this:
i=1;
x=[];
while (isempty(x))
options=optimset(options,'Algorithm',Here_I_need_a_list_of_Algorithms(i))
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options);
end
In 99% this code should be equivalent to
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options);
but sometimes the algorithm gives back an empty array because of numerical problems (exitflag -4). If there is a chance that one of the other algorithms can find a solution I would like to try them too.
So my question is:
Is there a possibility to automatically get a list of all linprog-algorithms that are supported by the installed Matlab-version ordered like Matlab recommends them.
I think looping through all algorithms can make sense in other scenarios too. For example when you need very precise data and have a lot of time, you could run them all and than evaluate which gives the best results.
Or one would like to loop through all algorithms, if one wants to find which algorithms is the best for LPs with a certain structure.
There's no automatic way to do this as far as I know. If you really want to do it, the easiest thing to do would be to go to the online documentation, and check through previous versions (online documentation is available for old versions, not just the most recent release), and construct some variables like this:
r2012balgos = {'active-set', 'trust-region-reflective', 'interior-point', 'interior-point-convex', 'levenberg-marquardt', 'trust-region-dogleg', 'lm-line-search', 'sqp'};
...
r2017aalgos = {...};
v = ver('matlab');
switch v.Release
case '(R2012b)'
algos = r2012balgos;
....
case '(R2017a)'
algos = r2017aalgos;
end
% loop through each of the algorithms
Seems boring, but it should only take you about 30 minutes.
There's a reason MathWorks aren't making this as easy as you might hope, though, because what you're asking for isn't a great idea.
It is possible to construct artificial problems where one algorithm finds a solution and the others don't. But in practice, typically if the recommended algorithm doesn't find a solution this doesn't indicate that you should switch algorithms, it indicates that your problem wasn't well-formulated, and you should consider modifying it, perhaps by modifying some constraints, or reformulating the objective function.
And after all, why stop with just looping through the alternative algorithms? Why not also loop through lots of values for other options such as constraint tolerances, optimality tolerances, maximum number of function evaluations, etc.? These may have just as much likelihood of affecting things as a choice of algorithm. And soon you're running an optimisation algorithm to search through the space of meta-parameters for your original optimisation.
That's not a great plan - probably better to just choose one of the recommended algorithms, stick to that, and if things don't work out then focus on improving your formulation of the problems rather than over-tweaking the optimisation itself.

How to vectorize signal and parameter?

I created a subsystem in Simulink with mask underneath. There are all sorts of control and calculation inside this subsystem. Now I have to duplicate this subsystem for one hundred thousand times because I need to connect one hundred thousands of this block in series.
What I have tried, I used the commands “add_block” and “add_line” where I can just type it in the Matlab command and the blocks and lines are added automatically.
What I wish to do now is,
I want to have 100 signals in a single subsystem, so instead of using one hundred thousand subsystem, I will only need one thousand of this subsystem, I understand that this can be done by vectorization.
I have a very limited knowledge on using vectorization feature in Matlab/Simulink. I appreciate if anyone of you could provide me a great reference on how to do this?
What I found here is something like this which I could not link it to my issue above: http://www.mathworks.co.uk/help/matlab/matlab_prog/vectorization.html
The other thing I found is by "using vectorization for most components. Most components are vectorized if they have a vectorized input signal or if one of their parameter is specified as a vector."
However, I could not find any further information/details, appreciate if anyone of you could give opinion on this? Thanks!

diagnostic for MATLAB ODE

I am solving a stiff PDE in MATLAB using ode15, and it often freezes depending on the initial conditions. I never actually get an error, it just won't finish even after 10 hours when it should take around 30 seconds to run. I am experimenting with different spatial and time node intervals, but it is hard, because I don't get feedback.
Is there some sort of equivalent to diagnostic for fsolve? stats is not useful because it only displays an output after fsolve is finished.
Check out the documentation on odeset, and specifically the stats option. I think you basically just want to set stats to on and you will get some feedback.
Also, depending on your ODE, you may need a different solver. About half way down the page on this page there is a list of most of the solvers available in MATLAB. Depending on whether your function is stiff or non-stiff, and how accurate you need to get, one of those might work better for you. Sometimes I just code them all in and comment out all but one until I find the one that runs the best for me, but check out the documentation on each if you want to find the "right" one for your application.
Your question is confusing because you refer to both ode15s and fsolve locking up. These are two completely different functions. One does numerical integration and the other solves for roots. Also, fsolve has no option called 'Stats' (see doc fsolve). If you want continuous output from fsolve use:
options = optimist('Display','iter');
[x,fval,exitflag] = fsolve(myfun,x0,options)
This will display the iteration count, number of function evaluations, the function value, and other stuff depending on what algorithm you use (the alorithm can be adjusted via the 'Algorithm' option). Again see doc fsolve for full details.
As far as the 'Stats' option with ode15s goes, it's not going to give you very much information. I doubt that it will you figure out why your system is halting (if it even is ode15s that you have a problem with). What you can try is using an output function via the 'OutputFcn' option of odeset. You can try the simple odeprint first:
options = odeset('OutputFcn',#odeprint)
which will print your state after each integration step. Type edit odeprint to see the code and how you might write your own output function if you need to do more.