While I was playing and testing various things with SwiftUI.
I found this bizarre situation. It is I guess related to the limit value that Double can handle, but anyway I thought it was weird enough to make a post. And hopefully someone can explain exactly what is happening or let me know where I made a mistake.
It seems like any odd value for t in the following code will cause the same kind of trouble.
let v:Double = 13082761331670030, t:Double = 1
var u:Double
u = v - t;
u += t;
if u == v {print("All is right.")}
else {
print("This is weird. We now have:")
print("v = \(String(format: "%.0f",v)) and u = \(String(format: "%.0f",u))")
}
Executing the code leads to:
u != v
Related
x = str(input())
while "a" in x:
x.replace("a", "", 1)
print(x)
when I run this code I expect it to give me the string x without any "a"s in it, but the problem is that it doesn't give me anything. How do I fix this?
I suggest you turn your code into code snippets in a post, to make it more readable.
Here is my implementation:
x = str(input())
x = x.replace('a','')
I am doing some of CodeWars challenges recently and I've got a problem with this one.
"You are given an array (which will have a length of at least 3, but could be very large) containing integers. The array is either entirely comprised of odd integers or entirely comprised of even integers except for a single integer N. Write a method that takes the array as an argument and returns this "outlier" N."
I've looked at some solutions, that are already on our website, but I want to solve the problem using my own approach.
The main problem in my code, seems to be that it ignores negative numbers even though I've implemented Math.abs() method in scala.
If you have an idea how to get around it, that is more than welcome.
Thanks a lot
object Parity {
var even = 0
var odd = 0
var result = 0
def findOutlier(integers: List[Int]): Int = {
for (y <- 0 until integers.length) {
if (Math.abs(integers(y)) % 2 == 0)
even += 1
else
odd += 1
}
if (even == 1) {
for (y <- 0 until integers.length) {
if (Math.abs(integers(y)) % 2 == 0)
result = integers(y)
}
} else {
for (y <- 0 until integers.length) {
if (Math.abs(integers(y)) % 2 != 0)
result = integers(y)
}
}
result
}
Your code handles negative numbers just fine. The problem is that you rely on mutable sate, which leaks between runs of your code. Your code behaves as follows:
val l = List(1,3,5,6,7)
println(Parity.findOutlier(l)) //6
println(Parity.findOutlier(l)) //7
println(Parity.findOutlier(l)) //7
The first run is correct. However, when you run it the second time, even, odd, and result all have the values from your previous run still in them. If you define them inside of your findOutlier method instead of in the Parity object, then your code gives correct results.
Additionally, I highly recommend reading over the methods available to a Scala List. You should almost never need to loop through a List like that, and there are a number of much more concise solutions to the problem. Mutable var's are also a pretty big red flag in Scala code, as are excessive if statements.
I tried to add these 4 slider values, but received this error, how do I solve it? Code:
#IBAction func mathValueChanged(_ sender: UISlider) {
let total = MathCriASlider.value + MathCriBSlider.value + MathCriCValue.value + MathCriDSlider.value
mathValue.text = "/(total)"
}
Frustrating for sure, I'm surprised to see this in more recent versions of Swift. In the past I've just had to break down the expression. e.g.
let A = MathCriASlider.value
let B = MathCriBSlider.value
let C = MathCriCSlider.value
let D = MathCriDSlider.value
let total = A + B + C + D
And you may even need to compute a pair of subtotals if it still complains.
The second line needs fixing, your string interpolation is wrong. Use
mathValue.text = "\(total)" // I changed the slash to a backslash
Which loop should I use when have to be extremely aware of the time it takes to iterate over a large array.
Short answer
Don’t micro-optimize like this – any difference there is could be far outweighed by the speed of the operation you are performing inside the loop. If you truly think this loop is a performance bottleneck, perhaps you would be better served by using something like the accelerate framework – but only if profiling shows you that effort is truly worth it.
And don’t fight the language. Use for…in unless what you want to achieve cannot be expressed with for…in. These cases are rare. The benefit of for…in is that it’s incredibly hard to get it wrong. That is much more important. Prioritize correctness over speed. Clarity is important. You might even want to skip a for loop entirely and use map or reduce.
Longer Answer
For arrays, if you try them without the fastest compiler optimization, they perform identically, because they essentially do the same thing.
Presumably your for ;; loop looks something like this:
var sum = 0
for var i = 0; i < a.count; ++i {
sum += a[i]
}
and your for…in loop something like this:
for x in a {
sum += x
}
Let’s rewrite the for…in to show what is really going on under the covers:
var g = a.generate()
while let x = g.next() {
sum += x
}
And then let’s rewrite that for what a.generate() returns, and something like what the let is doing:
var g = IndexingGenerator<[Int]>(a)
var wrapped_x = g.next()
while wrapped_x != nil {
let x = wrapped_x!
sum += x
wrapped_x = g.next()
}
Here is what the implementation for IndexingGenerator<[Int]> might look like:
struct IndexingGeneratorArrayOfInt {
private let _seq: [Int]
var _idx: Int = 0
init(_ seq: [Int]) {
_seq = seq
}
mutating func generate() -> Int? {
if _idx != _seq.endIndex {
return _seq[_idx++]
}
else {
return nil
}
}
}
Wow, that’s a lot of code, surely it performs way slower than the regular for ;; loop!
Nope. Because while that might be what it is logically doing, the compiler has a lot of latitude to optimize. For example, note that IndexingGeneratorArrayOfInt is a struct not a class. This means it has no overhead over declaring the two member variables directly. It also means the compiler might be able to inline the code in generate – there is no indirection going on here, no overloaded methods and vtables or objc_MsgSend. Just some simple pointer arithmetic and deferencing. If you strip away all the syntax for the structs and method calls, you’ll find that what the for…in code ends up being is almost exactly the same as what the for ;; loop is doing.
for…in helps avoid performance errors
If, on the other hand, for the code given at the beginning, you switch compiler optimization to the faster setting, for…in appears to blow for ;; away. In some non-scientific tests I ran using XCTestCase.measureBlock, summing a large array of random numbers, it was an order of magnitude faster.
Why? Because of the use of count:
for var i = 0; i < a.count; ++i {
// ^-- calling a.count every time...
sum += a[i]
}
Maybe the optimizer could have fixed this for you, but in this case it hasn’t. If you pull the invariant out, it goes back to being the same as for…in in terms of speed:
let count = a.count
for var i = 0; i < count; ++i {
sum += a[i]
}
“Oh, I would definitely do that every time, so it doesn’t matter”. To which I say, really? Are you sure? Bet you forget sometimes.
But you want the even better news? Doing the same summation with reduce was (in my, again not very scientific, tests) even faster than the for loops:
let sum = a.reduce(0,+)
But it is also so much more expressive and readable (IMO), and allows you to use let to declare your result. Given that this should be your primary goal anyway, the speed is an added bonus. But hopefully the performance will give you an incentive to do it regardless.
This is just for arrays, but what about other collections? Of course this depends on the implementation but there’s a good reason to believe it would be faster for other collections like dictionaries, custom user-defined collections.
My reason for this would be that the author of the collection can implement an optimized version of generate, because they know exactly how the collection is being used. Suppose subscript lookup involves some calculation (such as pointer arithmetic in the case of an array - you have to add multiple the index by the value size then add that to the base pointer). In the case of generate, you know what is being done is to sequentially walk the collection, and therefore you could optimize for this (for example, in the case of an array, hold a pointer to the next element which you increment each time next is called). Same goes for specialized member versions of reduce or map.
This might even be why reduce is performing so well on arrays – who knows (you could stick a breakpoint on the function passed in if you wanted to try and find out). But it’s just another justification for using the language construct you should probably be using regardless.
Famously stated: "We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil" Donald Knuth. It seems unlikely that you are in the %3.
Focus on the bigger problem at hand. After it is working, if it needs a performance boost, then worry about for loops. But I guarantee you, in the end, bigger structural inefficiencies or poor algorithm choice will be the performance problem, not a for loop.
Worrying about for loops is oh so 1960s.
FWIW, a rudimentary playground test shows map() is about 10 times faster than for enumeration:
class SomeClass1 {
let value: UInt32 = arc4random_uniform(100)
}
class SomeClass2 {
let value: UInt32
init(value: UInt32) {
self.value = value
}
}
var someClass1s = [SomeClass1]()
for _ in 0..<1000 {
someClass1s.append(SomeClass1())
}
var someClass2s = [SomeClass2]()
let startTimeInterval1 = CFAbsoluteTimeGetCurrent()
someClass1s.map { someClass2s.append(SomeClass2(value: $0.value)) }
println("Time1: \(CFAbsoluteTimeGetCurrent() - startTimeInterval1)") // "Time1: 0.489435970783234"
var someMoreClass2s = [SomeClass2]()
let startTimeInterval2 = CFAbsoluteTimeGetCurrent()
for item in someClass1s { someMoreClass2s.append(SomeClass2(value: item.value)) }
println("Time2: \(CFAbsoluteTimeGetCurrent() - startTimeInterval2)") // "Time2 : 4.81457495689392"
The for (with a counter) is just incrementing a counter. Very fast. The for-in uses an iterator (call object to pass the next element). This is much slower. But finally you want to access the element in both cases wich will then make no difference in the end.
Consider the following 2 scenarios:
boolean b = false;
int i = 0;
while(i++ < 5) {
b = true;
}
OR
boolean b = false;
int i = 0;
while(i++ < 5) {
if(!b) {
b = true;
}
}
Which is more "costly" to do? If the answer depends on used language/compiler, please provide. My main programming language is Java.
Please do not ask questions like why would I want to do either.. They're just barebone examples that point out the relevant: should a variable be set the same value in a loop over and over again or should it be tested on every loop that it holds a value needed to change?
Please do not forget the rules of Optimization Club.
The first rule of Optimization Club is, you do not Optimize.
The second rule of Optimization Club is, you do not Optimize without measuring.
If your app is running faster than the underlying transport protocol, the optimization is over.
One factor at a time.
No marketroids, no marketroid schedules.
Testing will go on as long as it has to.
If this is your first night at Optimization Club, you have to write a test case.
It seems that you have broken rule 2. You have no measurement. If you really want to know, you'll answer the question yourself by setting up a test that runs scenario A against scenario B and finds the answer. There are so many differences between different environments, we can't answer.
Have you tested this? Working on a Linux system, I put your first example in a file called LoopTestNoIf.java and your second in a file called LoopTestWithIf.java, wrapped a main function and class around each of them, compiled, and then ran with this bash script:
#!/bin/bash
function run_test {
iter=0
while [ $iter -lt 100 ]
do
java $1
let iter=iter+1
done
}
time run_test LoopTestNoIf
time run_test LoopTestWithIf
The results were:
real 0m10.358s
user 0m4.349s
sys 0m1.159s
real 0m10.339s
user 0m4.299s
sys 0m1.178s
Showing that having the if makes it slight faster on my system.
Are you trying to find out if doing the assignment each loop is faster in total run time than doing a check each loop and only assigning once on satisfaction of the test condition?
In the above example I would guess that the first is faster. You perform 5 assignments. In the latter you perform 5 test and then an assignment.
But you'll need to up the iteration count and throw in some stopwatch timers to know for sure.
Actually, this is the question I was interested in… (I hoped that I’ll find the answer somewhere to avoid own testing. Well, I didn’t…)
To be sure that your (mine) test is valid, you (I) have to do enough iterations to get enough data. Each iteration must be “long” enough (I mean the time scale) to show the true difference. I’ve found out that even one billion iterations are not enough to fit to time interval that would be long enough… So I wrote this test:
for (int k = 0; k < 1000; ++k)
{
{
long stopwatch = System.nanoTime();
boolean b = false;
int i = 0, j = 0;
while (i++ < 1000000)
while (j++ < 1000000)
{
int a = i * j; // to slow down a bit
b = true;
a /= 2; // to slow down a bit more
}
long time = System.nanoTime() - stopwatch;
System.out.println("\\tasgn\t" + time);
}
{
long stopwatch = System.nanoTime();
boolean b = false;
int i = 0, j = 0;
while (i++ < 1000000)
while (j++ < 1000000)
{
int a = i * j; // the same thing as above
if (!b)
{
b = true;
}
a /= 2;
}
long time = System.nanoTime() - stopwatch;
System.out.println("\\tif\t" + time);
}
}
I ran the test three times storing the data in Excel, then I swapped the first (‘asgn’) and second (‘if’) case and ran it three times again… And the result? Four times “won” the ‘if’ case and two times the ‘asgn’ appeared to be the better case. This shows how sensitive the execution might be. But in general, I hope that this has also proven that the ‘if’ case is better choice.
Thanks, anyway…
Any compiler (except, perhaps, in debug) will optimize both these statements to
bool b = true;
But generally, relative speed of assignment and branch depend on processor architecture, and not on compiler. A modern, super-scalar processor perform horribly on branches. A simple micro-controller uses roughly the same number of cycles per any instruction.
Relative to your barebones example (and perhaps your real application):
boolean b = false;
// .. other stuff, might change b
int i = 0;
// .. other stuff, might change i
b |= i < 5;
while(i++ < 5) {
// .. stuff with i, possibly stuff with b, but no assignment to b
}
problem solved?
But really - it's going to be a question of the cost of your test (generally more than just if (boolean)) and the cost of your assignment (generally more than just primitive = x). If the test/assignment is expensive or your loop is long enough or you have high enough performance demands, you might want to break it into two parts - but all of those criteria require that you test how things perform. Of course, if your requirements are more demanding (say, b can flip back and forth), you might require a more complex solution.