I am looking for specifically a flatmap solution to a problem of mocking the data column in a spark-scala dataframe by using data duplicacy technique like 1 to many mapping inside flatmap
My given data is something like this
|id |name|marks|
+---+----+-----+
|1 |ABCD|12 |
|2 |CDEF|12 |
|3 |FGHI|14 |
+---+----+-----+
and my expectation after doing 1 to 3 mapping of the id column will be something like this
|id |name|marks|
+---+----+-----+
|1 |ABCD|12 |
|2 |CDEF|12 |
|3 |FGHI|14 |
|2 |null|null |
|3 |null|null |
|1 |null|null |
|2 |null|null |
|1 |null|null |
|3 |null|null |
+---+----+-----+
Please feel free to let me know if there is any clarification required on the requirement part
Thanks in advance!!!
I see that you are attempting to generate data with a requirement of re-using values in the ID column.
You can just select the ID column and generate random values and do a union back to your original dataset.
For example:
val data = Seq((1,"asd",15), (2,"asd",20), (3,"test",99)).toDF("id","testName","marks")
+---+--------+-----+
| id|testName|marks|
+---+--------+-----+
| 1| asd| 15|
| 2| asd| 20|
| 3| test| 99|
+---+--------+-----+
import org.apache.spark.sql.types._
val newRecords = data.select("id").withColumn("testName", concat(lit("name_"), lit(rand()*10).cast(IntegerType).cast(StringType))).withColumn("marks", lit(rand()*100).cast(IntegerType))
+---+--------+-----+
| id|testName|marks|
+---+--------+-----+
| 1| name_2| 35|
| 2| name_9| 20|
| 3| name_3| 7|
+---+--------+-----+
val result = data.unionAll(newRecords)
+---+--------+-----+
| id|testName|marks|
+---+--------+-----+
| 1| asd| 15|
| 2| asd| 20|
| 3| test| 99|
| 1| name_2| 35|
| 2| name_9| 20|
| 3| name_3| 7|
+---+--------+-----+
you can run the randomisation portion of the code using a loop and do a union of all the generated dataframes.
Here is the before of the dataframe:
and here is the after:
notice how the rows that are repeated are all next to each other, as opposed to just starting the dataframe over from scratch at the end.
Thanks
Try with array_repeat with struct function then explode the array.
Example:
df.show()
/*
+----+----+
|col1|col2|
+----+----+
| 1| 4|
| 2| 5|
| 3| 6|
+----+----+
*/
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
df.withColumn("arr",explode(array_repeat(struct(df.columns.head,df.columns.tail:_*),7))).
select("arr.*").
toDF("col1","col2").
show(100,false)
/*
+----+----+
|col1|col2|
+----+----+
|1 |4 |
|1 |4 |
|1 |4 |
|1 |4 |
|1 |4 |
|1 |4 |
|1 |4 |
|2 |5 |
|2 |5 |
|2 |5 |
|2 |5 |
|2 |5 |
|2 |5 |
|2 |5 |
|3 |6 |
|3 |6 |
|3 |6 |
|3 |6 |
|3 |6 |
|3 |6 |
|3 |6 |
+----+----+
*/
Here's a function which duplicates a DataFrame:
def repeatRows(df: DataFrame, numRepeats: Int): DataFrame = {
(1 until numRepeats).foldLeft(df)((growingDF, _) => growingDF.union(df))
}
The problem of having the resulting DataFrame sorted is separate from the duplication process, and hence wasn't included in the function, but can be easily achieved afterwards.
So let's take your problem:
// Problem setup
val someDF = Seq((1,4),(2,4),(3,6)).toDF("col1","col2")
// Duplicate followed by sort
val duplicatedSortedDF = repeatRows(someDF, 3).sort("col1")
// Show result
duplicatedSortedDF.show()
+----+----+
|col1|col2|
+----+----+
| 1| 4|
| 1| 4|
| 1| 4|
| 2| 4|
| 2| 4|
| 2| 4|
| 3| 6|
| 3| 6|
| 3| 6|
+----+----+
And there you have it.
I have a dataframe with 100 columns and col names like col1, col2, col3.... I want to apply certain transformation on the values of columns based on condition matches. I can store the column names in a array of string. And pass the value each element of the array in withColumn and based on When condition i can transform the values of the column vertically.
But the question is, as Dataframe is immutable, so each updated version is need to store in a new variable and also new dataframe need to pass in withColumn to transform for next iteration.
Is there any way to create array of dataframe so that new dataframe can be stored as a element of array and it can iterate based on the value of iterator.
Or is there any other way to handle the same.
var arr_df : Array[DataFrame] = new Array[DataFrame](60)
--> This throws error "not found type DataFrame"
val df(0) = df1.union(df2)
for(i <- 1 to 99){
val df(i) = df(i-1).withColumn(col(i), when(col(i)> 0, col(i) +
1).otherwise(col(i)))
Here col(i) is an array of strings that stores the name of the columns of the original datframe .
As a example :
scala> val original_df = Seq((1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),(5,6,7,8),(6,7,8,9)).toDF("col1","col2","col3","col4")
original_df: org.apache.spark.sql.DataFrame = [col1: int, col2: int ... 2 more fields]
scala> original_df.show()
+----+----+----+----+
|col1|col2|col3|col4|
+----+----+----+----+
| 1| 2| 3| 4|
| 2| 3| 4| 5|
| 3| 4| 5| 6|
| 4| 5| 6| 7|
| 5| 6| 7| 8|
| 6| 7| 8| 9|
+----+----+----+----+
I want to iterate 3 columns : col1, col2, col3 if the value of that column is greater than 3, then it will be updated by +1
Check below code.
scala> df.show(false)
+----+----+----+----+
|col1|col2|col3|col4|
+----+----+----+----+
|1 |2 |3 |4 |
|2 |3 |4 |5 |
|3 |4 |5 |6 |
|4 |5 |6 |7 |
|5 |6 |7 |8 |
|6 |7 |8 |9 |
+----+----+----+----+
scala> val requiredColumns = df.columns.zipWithIndex.filter(_._2 < 3).map(_._1).toSet
requiredColumns: scala.collection.immutable.Set[String] = Set(col1, col2, col3)
scala> val allColumns = df.columns
allColumns: Array[String] = Array(col1, col2, col3, col4)
scala> val columnExpr = allColumns.filterNot(requiredColumns(_)).map(col(_)) ++ requiredColumns.map(c => when(col(c) > 3, col(c) + 1).otherwise(col(c)).as(c))
scala> df.select(columnExpr:_*).show(false)
+----+----+----+----+
|col1|col2|col3|col4|
+----+----+----+----+
|1 |2 |3 |4 |
|2 |3 |5 |5 |
|3 |5 |6 |6 |
|5 |6 |7 |7 |
|6 |7 |8 |8 |
|7 |8 |9 |9 |
+----+----+----+----+
If I understand you right, you are trying to do a dataframe wise operation. you dont need to iterate for this . I can show you how it can be done in pyspark. probably it can be taken over in scala.
from pyspark.sql import functions as F
tst= sqlContext.createDataFrame([(1,7,0),(1,8,4),(1,0,10),(5,1,90),(7,6,0),(0,3,11)],schema=['col1','col2','col3'])
expr = [F.when(F.col(coln)>3,F.col(coln)+1).otherwise(F.col(coln)).alias(coln) for coln in tst.columns if 'col3' not in coln]
tst1= tst.select(*expr)
results:
tst1.show()
+----+----+
|col1|col2|
+----+----+
| 1| 8|
| 1| 9|
| 1| 0|
| 6| 1|
| 8| 7|
| 0| 3|
+----+----+
This should give you the desired result
You can iterate over all columns and apply the condition in single line as below,
original_df.select(original_df.columns.map(c => (when(col(c) > lit(3), col(c)+1).otherwise(col(c))).alias(c)):_*).show()
+----+----+----+----+
|col1|col2|col3|col4|
+----+----+----+----+
| 1| 2| 3| 5|
| 2| 3| 5| 6|
| 3| 5| 6| 7|
| 5| 6| 7| 8|
| 6| 7| 8| 9|
| 7| 8| 9| 10|
+----+----+----+----+
You can use foldLeft whenever you want to make changes on multiple columns as below
val original_df = Seq(
(1,2,3,4),
(2,3,4,5),
(3,4,5,6),
(4,5,6,7),
(5,6,7,8),
(6,7,8,9)
).toDF("col1","col2","col3","col4")
//Filter the columns that yuou want to update
val columns = original_df.columns
columns.foldLeft(original_df){(acc, colName) =>
acc.withColumn(colName, when(col(colName) > 3, col(colName) + 1).otherwise(col(colName)))
}
.show(false)
Output:
+----+----+----+----+
|col1|col2|col3|col4|
+----+----+----+----+
|1 |2 |3 |5 |
|2 |3 |5 |6 |
|3 |5 |6 |7 |
|5 |6 |7 |8 |
|6 |7 |8 |9 |
|7 |8 |9 |10 |
+----+----+----+----+
I have a data frame of multiple columns and an index and I have to calculate mean of those columns before the index and after.
this is my pandas code:
for i in range(len(res.index)):
i=int(i)
m=int(res['index'].ix[i])
n = len(res.columns[1:m])
if n == 0:
res['mean'].ix[i]=0
else:
res['mean'].ix[i]=int(res.ix[i,1:m].sum()) / n
and i want to do it in pyspark?
any help please!!
You can calculate this using UDF in pyspark. Here is an example:-
from pyspark.sql import functions as F
from pyspark.sql import types as T
import numpy as np
sample_data = sqlContext.createDataFrame([
range(10)+[4],
range(50, 60)+[2],
range(9, 19)+[4],
range(19, 29)+[3],
], ["col_"+str(i) for i in range(10)]+["index"])
sample_data.show()
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|col_0|col_1|col_2|col_3|col_4|col_5|col_6|col_7|col_8|col_9|index|
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 4|
| 50| 51| 52| 53| 54| 55| 56| 57| 58| 59| 2|
| 9| 10| 11| 12| 13| 14| 15| 16| 17| 18| 4|
| 19| 20| 21| 22| 23| 24| 25| 26| 27| 28| 3|
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
def def_mn(data, index, mean="pre"):
if mean == "pre":
return sum(data[:index])/float(len(data[:index]))
elif mean == "post":
return sum(data[index:])/float(len(data[index:]))
mn_udf = F.udf(def_mn)
sample_data.withColumn(
"index_pre_mean",
mn_udf(F.array([cl for cl in sample_data.columns[:-1]]), "index")
).withColumn(
"index_post_mean",
mn_udf(F.array([cl for cl in sample_data.columns[:-1]]), "index", F.lit("post"))
).show()
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+--------------+---------------+
|col_0|col_1|col_2|col_3|col_4|col_5|col_6|col_7|col_8|col_9|index|index_pre_mean|index_post_mean|
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+--------------+---------------+
|0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |4 |1.5 |6.5 |
|50 |51 |52 |53 |54 |55 |56 |57 |58 |59 |2 |50.5 |55.5 |
|9 |10 |11 |12 |13 |14 |15 |16 |17 |18 |4 |10.5 |15.5 |
|19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |3 |20.0 |25.0 |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+--------------+---------------+
assume there is a dataframe as follows:
machine_id | value
1| 5
1| 3
2| 6
2| 9
2| 14
I want to produce a final dataframe like this
machine_id | value | diff
1| 5| 1
1| 3| -1
2| 6| -4
2| 10| 0
2| 14| 4
the values in "diff" column is computed as groupBy($"machine_id").avg($"value") - value.
note that the avg for machine_id==1 is (5+3)/2 = 4 and for machine_id ==2 is (6+10+14)/3 = 10
What is the best way to produce such a final dataframe in Apache Spark?
You can use Window function to get the desired output
Given the dataframe as
+----------+-----+
|machine_id|value|
+----------+-----+
|1 |5 |
|1 |3 |
|2 |6 |
|2 |10 |
|2 |14 |
+----------+-----+
You can use following code
df.withColumn("diff", avg("value").over(Window.partitionBy("machine_id")))
.withColumn("diff", 'value - 'diff)
to get the final result as
+----------+-----+----+
|machine_id|value|diff|
+----------+-----+----+
|1 |5 |1.0 |
|1 |3 |-1.0|
|2 |6 |-4.0|
|2 |10 |0.0 |
|2 |14 |4.0 |
+----------+-----+----+