How exactly do you perform one way encryption using embeddings from a deep neural network?
Fully homomorphic encryption (FHE) benefits society by ensuring full privacy. The Private Identity recognition algorithm uses FHE to enable encrypted match and search operations on an encrypted dataset without any requirement to store, transmit or use plaintext biometrics or biometric templates. The biometric data is irreversibly anonymized using a 1-way cryptographic hash algorithm and then discarded without the data ever leaving the local device.
My question is how exactly does this use embeddings to accomplish this? Where do embeddings come in?
An embedding is a set of floating point numbers taken from the N-1 layer of a softmax Deep Neural Network (DNN). Initially, the community used DNNs to get a resulting class (softmax), but an interesting property turned out to be the values at the layer before the softamx layer.
These values have interesting properties. They may function as a 1-way encryption. They also closely relate to the initial input. In a geometric distance (cosine, Euclidean) values are close to similar inputs. This means two pictures of my face will be closer (geometrically) than a picture of two different people This property allows operations on the resulting encryption.
One of the operations allowed is match. In the encrypted space, using the distance properties, we can match using only the embedding. Since we are only working in the encrypted space, we have an implementation of FHE and the embedding comes from the DNN.
Subsequently, we have found that a second DNN allows the classification, but only using embeddings. We now have privacy and performance.
Related
I want to ask one general question that nowadays Deep learning specially Convolutional Neural Network (CNN) has been used in every field. Sometimes it is not necessary to use CNN for the problem but the researchers are using and following the trend.
So for the Object Detection problem, is it a kind of problem where CNN is really needed to solve the detection problem?
That is unhappy question. In title you ask about CNN, but you ask about deep learning in general.
So we don't necessary need deep learning for object recognition. But trained deep networks gets better results. Companies like Google and others are thankful for every % of better results.
About CNN, they gets better results than "traditional" ANN and also have less parameters because of weights sharing. CNN also allow transfer learning(you take a feature detector- convolution and pooling layers and than you connect on feature detector yours full connected layers).
A key concept of CNN's is the idea of translational invariance. In short, using a convolutional kernel on an image allows the machine to learn a set of weights for a specific feature (an edge, or a much more detailed object, depending on the layering of the network) and apply it across the entire image.
Consider detecting a cat in an image. If we designed some set of weights that allowed the learner to recognize a cat, we would like those weights to be the same no matter where the cat is in the image! So we would "assign" a layer in the convolutional kernel to detecting cats, and then convolve over the entire image.
Whatever the reason for the recent successes of CNN's, it should be noted that regular fully-connected ANN's should perform just as well. The problem is that they quickly become computationally infeasible on larger images, whereas CNN's are much more efficient due to parameter sharing.
I want to costruct a neural network which will be trained based on data i create. My question is what form these data should have? In other words does keras allow neural networks that take strings/characters as input? If not, and only is able to accept numbers in what range should the input/output be?
The only condition for your input data i.e features, is that it should be numerical. There isn't really any constraint on range but it's always a good idea to do Feature Scaling, Normalization etc to make sure that our model won't get confused. Neural Networks or other machine learning methods cannot accept string (characters, words) directly, therefore, you need to first convert string to numbers. There are many ways to do that, most common techniques include Bag of Words, tf-idf features, word embeddings etc.
Following tutorials (using scikit) might be a good starting point:
http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words
If I've understood correctly, when training neural networks to recognize objects in images it's common to map single pixel to a single input layer node. However, sometimes we might have a large picture with only a small area of interest. For example, if we're training a neural net to recognize traffic signs, we might have images where the traffic sign covers only a small portion of it, while the rest is taken by the road, trees, sky etc. Creating a neural net which tries to find a traffic sign from every position seems extremely expensive.
My question is, are there any specific strategies to handle these sort of situations with neural networks, apart from preprocessing the image?
Thanks.
Using 1 pixel per input node is usually not done. What enters your network is the feature vector and as such you should input actual features, not raw data. Inputing raw data (with all its noise) will not only lead to bad classification but training will take longer than necessary.
In short: preprocessing is unavoidable. You need a more abstract representation of your data. There are hundreds of ways to deal with the problem you're asking. Let me give you some popular approaches.
1) Image proccessing to find regions of interest. When detecting traffic signs a common strategy is to use edge detection (i.e. convolution with some filter), apply some heuristics, use a threshold filter and isolate regions of interest (blobs, strongly connected components etc) which are taken as input to the network.
2) Applying features without any prior knowledge or image processing. Viola/Jones use a specific image representation, from which they can compute features in a very fast way. Their framework has been shown to work in real-time. (I know their original work doesn't state NNs but I applied their features to Multilayer Perceptrons in my thesis, so you can use it with any classifier, really.)
3) Deep Learning.
Learning better representations of the data can be incorporated into the neural network itself. These approaches are amongst the most popular researched atm. Since this is a very large topic, I can only give you some keywords so that you can research it on your own. Autoencoders are networks that learn efficient representations. It is possible to use them with conventional ANNs. Convolutional Neural Networks seem a bit sophisticated at first sight but they are worth checking out. Before the actual classification of a neural network, they have alternating layers of subwindow convolution (edge detection) and resampling. CNNs are currently able to achieve some of the best results in OCR.
In every scenario you have to ask yourself: Am I 1) giving my ANN a representation that has all the data it needs to do the job (a representation that is not too abstract) and 2) keeping too much noise away (and thus staying abstract enough).
We usually dont use fully connected network to deal with image because the number of units in the input layer will be huge. In neural network, we have specific neural network to deal with image which is Convolutional neural network(CNN).
However, CNN plays a role of feature extractor. The encoded feature will finally feed into a fully connected network which act as a classifier. In your case, I dont know how small your object is compare to the full image. But if the interested object is really small, even use CNN, the performance for image classification wont be very good. Then we probably need to use object detection(which used sliding window) to deal with it.
If you want recognize small objects on large sized image, you should use "scanning window".
For "scanning window" you can to apply dimention reducing methods:
DCT (http://en.wikipedia.org/wiki/Discrete_cosine_transform)
PCA (http://en.wikipedia.org/wiki/Principal_component_analysis)
Is there a machine learning concept (algorithm or multi-classifier system) that can detect the variance of network attacks(or try to).
One of the biggest problems for signature based intrusion detection systems is the inability to detect new or variant attacks.
Reading up, anomaly detection seems to still be a statistical based en-devour it refers to detecting patterns in a given data set which isn't the same as detecting variation in packet payloads. Anomaly based NIDS monitors network traffic and compares it against an established baseline of a normal traffic profile. The baseline characterizes what is "normal" for the network - such as the normal bandwidth usage, the common protocols used, correct combinations of ports numbers and devices etc
Say some one uses Virus A to propagate through a network then some one writes a rule to stop Virus A but another person writes a "variation" of Virus A called Virus B purely for the purposes of evading that initial rule but still using most if not all of the same tactics/code. Is there not a way to detect variance?
If there is whats the umbrella term it would come under, as ive been under the illusion that anomaly detection was it.
Could machine learning be used for pattern recognition(rather than pattern matching) at the packet payload level?
i think your intution to look at machine learning techniques is correct, or will turn out to be correct (One of the biggest problems for signature based intrusion detection systems is the inability to detect new or variant attacks.) The superior performance of ML techiques is in general due to the ability of these algorithms to generalize (a multiplicity of soft constraints rather than a few hard constraints). and to adapt (updates based on new training instances to frustrate simple countermeasures)--two attributes that i would imagine are crucial for identifying network attacks.
The theoretical promise aside, there are practical difficulties with applying ML techniques to problems like the one recited in the OP. By far the most significant is the difficultly in gathering data to train the classifier. In particular, reliably labeling data points as "intrusion" is probably not easy; likewise, my guess is that these instances are sparsely distributed in the raw data."
I suppose it's this limitation that has led to the increased interest (as evidenced at least by the published literature) in applying unsupervised ML techniques to problems like network intrusion detection.
Unsupervised techniques differ from supervised techniques in that the data is fed to the algorithms without a response variable (i.e., without the class labels). In these cases you are relying on the algorithm to discern structure in the data--i.e., some inherent ordering in the data into reasonably stable groups or clusters (possibly what you the OP had in mind by "variance." So with an unsupervised technique, there is no need to explicitly show the algorithm instances of each class, nor is it necessary to establish baseline measurements, etc.
The most frequently used unsupervised ML technique applied to problems of this type is probably the Kohonen Map (also sometimes called self-organizing map or SOM.)
i use Kohonen Maps frequently, but so far not for this purpose. There are however, numerous published reports of their successful application in your domain of interest, e.g.,
Dynamic Intrusion Detection Using Self-Organizing Maps
Multiple Self-Organizing Maps for Intrusion Detection
I know MATLAB has at least one available implementation of Kohonen Map--the SOM Toolbox. The homepage for this Toolbox also contains a brief introduction to Kohonen Maps.
How do I approach the problem with a neural network and a intrusion detection system where by lets say we have an attack via FTP.
Lets say some one attempts to continuously try different logins via brute force attack on an ftp account.
How would I set the structure of the NN? What things do I have to consider? How would it recognise "similar approaches in the future"?
Any diagrams and input would be much appreciated.
Your question is extremely general and a good answer is a project in itself. I recommend contracting someone with experience in neural network design to help come up with an appropriate model or even tell you whether your problem is amenable to using a neural network. A few ideas, though:
Inputs need to be quantized, so start by making a list of possible numeric inputs that you could measure.
Outputs also need to be quantized and you probably can't generate a simple "Yes/no" response. Most likely you'll want to generate one or more numbers that represent a rough probability of it being an attack, perhaps broken down by category.
You'll need to accumulate a large set of training data that has been analyzed and quantized into the inputs and outputs you've designed. Figuring out the process of doing this quantization is a huge part of the overall problem.
You'll also need a large set of validation data, which should be quantized in the same way as the training data, but that should not take any part in the training, as otherwise you will simply force a correlation network that may well be completely meaningless.
Once you've completed the above, you can think about how you want to structure your network and the specific algorithms you want to use to train it. There is a wide range of literature on this topic, but, honestly, this is the simpler part of the problem. Representing the problem in a way that can be processed coherently is much more difficult.