Multiple Replacements for one Identifer - macros

Is it possible to replace the same identifier with different replacements?
I tried
#define M a
#define REPLACE_WITH_a(X) X
#undef M
#define M b
#define REPLACE_WITH_b(X) X
#undef M
#define FOO(X) REPLACE_WITH_a(X) REPLACE_WITH_b(X)
//FOO(M) evaluates to M M instead of a b
but M doesn't get replaced with either a or b

Related

How to get syntax declarations to be used by case splitting

I would like to automatically case over arguments using a syntax declared
besides the one given as a type constructor. For example,
postulate P : ℕ → ℕ → Set
data Silly : Set where
goo : (n : ℕ) → Fin n → (m : ℕ) → Fin m → P n m → Silly
Here, I'd like to have the proof P n m occur between the n and m arguments, but that cannot be since both need to be declare for it to be expressed. Hence, we use a syntax declaration:
syntax goo n i m j pf = i ⟵[ n , pf , m ]⟶ j
Now, we can write-up by-hand
want-to-use-syntax-in-pattern-matching : Silly → Set
want-to-use-syntax-in-pattern-matching (i ⟵[ n , pf , m ]⟶ j) = ℕ
This works fine, but when I case-split via C-c C-c, it uses goo instead of my syntax. Is there any way to make case splitting use my declared syntax ?
(
Incidentally, using
syntax goo n i m j pf = i ─[ n , pf , m ]⟶ j
fails, where ─ is produced by \---
)
Nowadays Agda resugars patterns on the left if they are in scope unqualified
so this would just work.

Inconsistent behaviour with each and peach in KDB

As a minimal example, for instance if I have:
q) x:flip `a`b!(enlist 1;enlist 2);
q) y:flip `c`d!(enlist 3;enlist 4);
q) (raze x), (raze y)
`a`b`c`d!1j 2j 3j 4j # works as expected
But with peach involved,
q) {(raze x), (raze y)} peach x
enlist 1j 2j # I was expecting `a`b`c`d!1j 2j 3j 4j
There is no 3j 4j in the output - why has my raze y been ignored?
Indeed, each also gives a different output
q) {(raze x), (raze y)} each x
({:(raze x), (raze y);}';flip `a`b!(enlist 1j;enlist 2j))
I thought peach was just a parallel version of each, so both should yield the same...
What's going on?
That was not an inconsistent behavior of peach and each.
First, Functions in kdb has implicit parameters as x,y,z if not specified any.
So f:{x+y} is equivalent to f:{[x;y] x+y}
But f:{[a;b] a+b} will not have x,y,z as implicit parameter
For more details, see section Implicit Parameters in http://code.kx.com/q4m3/6_Functions/#617-implicit-parameters
Peach Case:
When you do {(raze x), (raze y)} peach x :
i) Another way of writing this function is:
f:{[x;y] (raze x),(raze y)}
And call is like: f[;] peach x
So you are passing global x to local x of a function but nothing in y, that's why you are getting only 1 and 2 and not 3 &4 in output.
ii) Why only 1 and 2 and not ab!1 2 in output?
When you pass each row of table (x in your case) to a function, it goes in form of a dictionary. And raze on dictionary gives only values.
You have to modify your function for correct working like this(Use Each Both ):
flip {x,y}' [x;y]
' is each both which is used when you have more then one arguments and you want to apply each on all of them simultaneoulsy.
This will take one row at a time from both global x and y and copy it to local x and y in dictionary form and then join them.
Each Case:
Each is just giving you message that your function requires 2 arguments and hence it couldn't execute it.
Why Peach worked and Each didn't?
Peach and Each are not same for some scenarios.
When you have dyadic function, then peach works like each prior(':) and not as Each.
They are same only for monadic functions. In your case you have dyadic function.
x and y can be implicit arguments to a function. Your use of x and y for the name of the list variables is confusing and not recommended.
To make it clear what is happening consider if I renamed the variables a,b:
q)a:flip `a`b!(enlist 1;enlist 2);
q)b:flip `c`d!(enlist 3;enlist 4);
q)(raze a), (raze b)
a| 1
b| 2
c| 3
d| 4
q){(raze a), (raze b)} peach x
a b c d
-------
1 2 3 4
You can see how peach/each handle the implicit function arguments with this example:
q)x:x
q)y:y
q){(x;y)} each 1
{(x;y)}'[1]
q){(x;y)} peach 1
1
I can't tell for sure what behaviour you want so all I can do is point out why there's an issue.

Indexed family of binary operators with infix notation

Suppose you want to define a family of binary operators (indexed by sets, say) where the types of the arguments depends on the value of the index, and the index is passed explicitly. In addition, suppose you would like a member of the family to be usable in infix notation:
x <[A] y
A here is the index; the brackets [-] are supposed to indicate that A should be read as a subscript. Giving a type signature for such an operation compatible with this syntax is difficult because the type of x depends on the value A, and so A : Set must occur to the left of x : A in the definition of _<[_]_.
I've experimented with the following trick (hack?) based on syntax declarations:
cmp : (A : Set) → A → A → Set
cmp = {!!}
syntax cmp A x y = x <[ A ] y
postulate C : Set
postulate c : C
x = c <[ C ] c
This seems to work, unless your binary operation uses implicit instances. If I try to add arguments of the form {{x}} to a syntax declaration, Agda complains. (Not unreasonably, perhaps.)
It seems one can adapt the idiom by introducing a version of cmp which takes the implicit instance explicitly, and then define a variant of the syntax which invokes that version:
postulate B : Set
-- Now expects an ambient B.
cmp : (A : Set) {{b : B}} → A → A → Set
cmp = {!!}
-- Version of cmp that makes implicit instance explicit.
cmp-explicit : (A : Set) (b : B) → A → A → Set
cmp-explicit A b = cmp A {{b}}
syntax cmp A x y = x <[ A ] y
syntax cmp-explicit A b x y = x <[ A at b ] y
postulate C : Set
postulate c : C
postulate b : B
x = c <[ C ] c -- pick up ambient B
y = c <[ C at b ] c -- pass B explicitly
(Since syntax doesn't appear to support {{x}} arguments, one cannot just inline cmp into cmp-explicit, without giving up the ability to pick up an ambient B entirely.)
Is this a hack? Is there another way to flip arguments x and y when the type of y depends on the value of x, and x is passed explicitly?
Naturally, defining
_<′[_]_ = λ x A y → cmp A x y
causes Agda to complain when typechecking x.
You can't really flip the arguments in a way that A : Set comes after x : A.
You already mentioned syntax, which I think is the best solution. This works because Agda will transform x <[ A ] y into cmp A x y and that's fine with the type checker.
Here's another (rather ugly and hacky) approach. Let's say we have:
_<[_]_ : {A : Set} → A → ? → A → Set
Here we can exploit unification a bit: by using something that mentions A in the ? hole, we can force the type checker to fill in the implicit A in front. But as far as I know, there's no simple type we can use in place of ?, so that we get the required x <[ A ] y. But to finish the thought, here's one thing that works:
data Is : Set → Set₁ where
is : (A : Set) → Is A
_<[_]_ : {A : Set} → A → Is A → A → Set
x <[ is A ] y = cmp A x y
Yes, this is fairly ugly and I would recommend against it.
But back to your question about syntax: I would not consider syntax to be a hack in any way. In fact, the standard library uses syntax in roughly the same way in one place (Data.Plus to be exact):
syntax Plus R x y = x [ R ]⁺ y
Even having cmp-explicit around is useful. I would even go as far as to suggest you make two extra versions:
cmp-syntax = cmp
cmp-explicit-syntax = λ A b → cmp A {{b}}
syntax cmp-syntax A x y = x <[ A ] y
syntax cmp-explicit-syntax A b x y = x <[ A at b ] y
If the user of your module does not want to use the syntactic shortcut (for example, he imports another module that defines _<[_]_), he can simply choose to not import it and still have cmp around.
Again, standard library does this with the syntactic shortcut for Σ. The shortcut allows you to write:
open import Data.Nat
open import Data.Product
open import Relation.Binary.PropositionalEquality
x : Σ[ n ∈ ℕ ] n + 2 ≡ 4
x = 2 , refl
And if you do not want it, then you simply:
open import Data.Product
hiding (Σ-syntax)

How to divide a pair of Num values?

Here is a function that takes a pair of Integral
values and divides them:
divide_v1 :: Integral a => (a, a) -> a
divide_v1 (m, n) = (m + n) `div` 2
I invoke the function with a pair of Integral
values and it works as expected:
divide_v1 (1, 3)
Great. That's perfect if my numbers are always Integrals.
Here is a function that takes a pair of Fractional
values and divides them:
divide_v2 :: Fractional a => (a, a) -> a
divide_v2 (m, n) = (m + n) / 2
I invoke the function with a pair of Fractional
values and it works as expected:
divide_v2 (1.0, 3.0)
Great. That's perfect if my numbers are always Fractionals.
I would like a function that works regardless of whether the
numbers are Integrals or Fractionals:
divide_v3 :: Num a => (a, a) -> a
divide_v3 (m, n) = (m + n) ___ 2
What operator do I use for _?
To expand on what AndrewC said, div doesn't have the same properties that / does. For example, in maths, if a divided by b = c, then c times b == a. When working with types like Double and Float, the operations / and * satisfy this property (to the extent that the accuracy of the type allows). But when using div with Ints, the property doesn't hold true. 5 div 3 = 1, but 1*3 /= 5! So if you want to use the same "divide operation" for a variety of numeric types, you need to think about how you want it to behave. Also, you almost certainly wouldn't want to use the same operator /, because that would be misleading.
If you want your "divide operation" to return the same type as its operands, here's one way to accomplish that:
class Divideable a where
mydiv :: a -> a -> a
instance Divideable Int where
mydiv = div
instance Divideable Double where
mydiv = (/)
In GHCi, it looks like this:
λ> 5 `mydiv` 3 :: Int
1
λ> 5 `mydiv` 3 :: Double
1.6666666666666667
λ> 5.0 `mydiv` 3.0 :: Double
1.6666666666666667
On the other hand, if you want to do "true" division, you would need to convert the integral types like this:
class Divideable2 a where
mydiv2 :: a -> a -> Double
instance Divideable2 Int where
mydiv2 a b = fromIntegral a / fromIntegral b
instance Divideable2 Double where
mydiv2 = (/)
In GHCi, this gives:
λ> 5 `mydiv2` 3
1.6666666666666667
λ> 5.0 `mydiv2` 3.0
1.6666666666666667
I think you are looking for Associated Types which allows for implicit type coercion and are explained quite nicely here. Below is an example for the addition of doubles and integers.
class Add a b where
type SumTy a b
add :: a -> b -> SumTy a b
instance Add Integer Double where
type SumTy Integer Double = Double
add x y = fromIntegral x + y
instance Add Double Integer where
type SumTy Double Integer = Double
add x y = x + fromIntegral y
instance (Num a) => Add a a where
type SumTy a a = a
add x y = x + y

Write this Scala Matrix multiplication in Haskell [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Can you overload + in haskell?
Can you implement a Matrix class and an * operator that will work on two matrices?:
scala> val x = Matrix(3, 1,2,3,4,5,6)
x: Matrix =
[1.0, 2.0, 3.0]
[4.0, 5.0, 6.0]
scala> x*x.transpose
res0: Matrix =
[14.0, 32.0]
[32.0, 77.0]
and just so people don't say that it's hard, here is the Scala implementation (courtesy of Jonathan Merritt):
class Matrix(els: List[List[Double]]) {
/** elements of the matrix, stored as a list of
its rows */
val elements: List[List[Double]] = els
def nRows: Int = elements.length
def nCols: Int = if (elements.isEmpty) 0
else elements.head.length
/** all rows of the matrix must have the same
number of columns */
require(elements.forall(_.length == nCols))
/* Add to each elem of matrix */
private def addRows(a: List[Double],
b: List[Double]):
List[Double] =
List.map2(a,b)(_+_)
private def subRows(a: List[Double],
b: List[Double]):List[Double] =
List.map2(a,b)(_-_)
def +(other: Matrix): Matrix = {
require((other.nRows == nRows) &&
(other.nCols == nCols))
new Matrix(
List.map2(elements, other.elements)
(addRows(_,_))
)
}
def -(other: Matrix): Matrix = {
require((other.nRows == nRows) &&
(other.nCols == nCols))
new Matrix(
List.map2(elements, other.elements)
(subRows(_,_))
)
}
def transpose(): Matrix = new Matrix(List.transpose(elements))
private def dotVectors(a: List[Double],
b: List[Double]): Double = {
val multipliedElements =
List.map2(a,b)(_*_)
(0.0 /: multipliedElements)(_+_)
}
def *(other: Matrix): Matrix = {
require(nCols == other.nRows)
val t = other.transpose()
new Matrix(
for (row <- elements) yield {
for (otherCol <- t.elements)
yield dotVectors(row, otherCol)
}
)
override def toString(): String = {
val rowStrings =
for (row <- elements)
yield row.mkString("[", ", ", "]")
rowStrings.mkString("", "\n", "\n")
}
}
/* Matrix constructor from a bunch of numbers */
object Matrix {
def apply(nCols: Int, els: Double*):Matrix = {
def splitRowsWorker(
inList: List[Double],
working: List[List[Double]]):
List[List[Double]] =
if (inList.isEmpty)
working
else {
val (a, b) = inList.splitAt(nCols)
splitRowsWorker(b, working + a)
}
def splitRows(inList: List[Double]) =
splitRowsWorker(inList, List[List[Double]]())
val rows: List[List[Double]] =
splitRows(els.toList)
new Matrix(rows)
}
}
EDIT I understood that strictly speaking the answer is No: overloading * is not possible without side-effects of defining also a + and others or special tricks. The numeric-prelude package describes it best:
In some cases, the hierarchy is not finely-grained enough: Operations
that are often defined independently are lumped together. For
instance, in a financial application one might want a type "Dollar",
or in a graphics application one might want a type "Vector". It is
reasonable to add two Vectors or Dollars, but not, in general,
reasonable to multiply them. But the programmer is currently forced to
define a method for '(*)' when she defines a method for '(+)'.
It'll be perfectly safe with a smart constructor and stored dimensions. Of course there are no natural implementations for the operations signum and fromIntegral (or maybe a diagonal matrix would be fine for the latter).
module Matrix (Matrix(),matrix,matrixTranspose) where
import Data.List (transpose)
data Matrix a = Matrix {matrixN :: Int,
matrixM :: Int,
matrixElems :: [[a]]}
deriving (Show, Eq)
matrix :: Int -> Int -> [[a]] -> Matrix a
matrix n m vals
| length vals /= m = error "Wrong number of rows"
| any (/=n) $ map length vals = error "Column length mismatch"
| otherwise = Matrix n m vals
matrixTranspose (Matrix m n vals) = matrix n m (transpose vals)
instance Num a => Num (Matrix a) where
(+) (Matrix m n vals) (Matrix m' n' vals')
| m/=m' = error "Row number mismatch"
| n/=n' = error "Column number mismatch"
| otherwise = Matrix m n (zipWith (zipWith (+)) vals vals')
abs (Matrix m n vals) = Matrix m n (map (map abs) vals)
negate (Matrix m n vals) = Matrix m n (map (map negate) vals)
(*) (Matrix m n vals) (Matrix n' p vals')
| n/=n' = error "Matrix dimension mismatch in multiplication"
| otherwise = let tvals' = transpose vals'
dot x y = sum $ zipWith (*) x y
result = map (\col -> map (dot col) tvals') vals
in Matrix m p result
Test it in ghci:
*Matrix> let a = matrix 3 2 [[1,0,2],[-1,3,1]]
*Matrix> let b = matrix 2 3 [[3,1],[2,1],[1,0]]
*Matrix> a*b
Matrix {matrixN = 3, matrixM = 3, matrixElems = [[5,1],[4,2]]}
Since my Num instance is generic, it even works for complex matrices out of the box:
Prelude Data.Complex Matrix> let c = matrix 2 2 [[0:+1,1:+0],[5:+2,4:+3]]
Prelude Data.Complex Matrix> let a = matrix 2 2 [[0:+1,1:+0],[5:+2,4:+3]]
Prelude Data.Complex Matrix> let b = matrix 2 3 [[3:+0,1],[2,1],[1,0]]
Prelude Data.Complex Matrix> a
Matrix {matrixN = 2, matrixM = 2, matrixElems = [[0.0 :+ 1.0,1.0 :+ 0.0],[5.0 :+ 2.0,4.0 :+ 3.0]]}
Prelude Data.Complex Matrix> b
Matrix {matrixN = 2, matrixM = 3, matrixElems = [[3.0 :+ 0.0,1.0 :+ 0.0],[2.0 :+ 0.0,1.0 :+ 0.0],[1.0 :+ 0.0,0.0 :+ 0.0]]}
Prelude Data.Complex Matrix> a*b
Matrix {matrixN = 2, matrixM = 3, matrixElems = [[2.0 :+ 3.0,1.0 :+ 1.0],[23.0 :+ 12.0,9.0 :+ 5.0]]}
EDIT: new material
Oh, you want to just override the (*) function without any Num stuff. That's possible to o but you'll have to remember that the Haskell standard library has reserved (*) for use in the Num class.
module Matrix where
import qualified Prelude as P
import Prelude hiding ((*))
import Data.List (transpose)
class Multiply a where
(*) :: a -> a -> a
data Matrix a = Matrix {matrixN :: Int,
matrixM :: Int,
matrixElems :: [[a]]}
deriving (Show, Eq)
matrix :: Int -> Int -> [[a]] -> Matrix a
matrix n m vals
| length vals /= m = error "Wrong number of rows"
| any (/=n) $ map length vals = error "Column length mismatch"
| otherwise = Matrix n m vals
matrixTranspose (Matrix m n vals) = matrix n m (transpose vals)
instance P.Num a => Multiply (Matrix a) where
(*) (Matrix m n vals) (Matrix n' p vals')
| n/=n' = error "Matrix dimension mismatch in multiplication"
| otherwise = let tvals' = transpose vals'
dot x y = sum $ zipWith (P.*) x y
result = map (\col -> map (dot col) tvals') vals
in Matrix m p result
a = matrix 3 2 [[1,2,3],[4,5,6]]
b = a * matrixTranspose
Testing in ghci:
*Matrix> b
Matrix {matrixN = 3, matrixM = 3, matrixElems = [[14,32],[32,77]]}
There. Now if a third module wants to use both the Matrix version of (*) and the Prelude version of (*) it'll have to of course import one or the other qualified. But that's just business as usual.
I could've done all of this without the Multiply type class but this implementation leaves our new shiny (*) open for extension in other modules.
Alright, there's a lot of confusion about what's happening here floating around, and it's not being helped by the fact that the Haskell term "class" does not line up with the OO term "class" in any meaningful way. So let's try to make a careful answer. This answer starts with Haskell's module system.
In Haskell, when you import a module Foo.Bar, it creates a new set of bindings. For each variable x exported by the module Foo.Bar, you get a new name Foo.Bar.x. In addition, you may:
import qualified or not. If you import qualified, nothing more happens. If you do not, an additional name without the module prefix is defined; in this case, just plain old x is defined.
change the qualification prefix or not. If you import as Alias, then the name Foo.Bar.x is not defined, but the name Alias.x is.
hide certain names. If you hide name foo, then neither the plain name foo nor any qualified name (like Foo.Bar.foo or Alias.foo) is defined.
Furthermore, names may be multiply defined. For example, if Foo.Bar and Baz.Quux both export the variable x, and I import both modules without qualification, then the name x refers to both Foo.Bar.x and Baz.Quux.x. If the name x is never used in the resulting module, this clash is ignored; otherwise, a compiler error asks you to provide more qualification.
Finally, if none of your imports mention the module Prelude, the following implicit import is added:
import Prelude
This imports the Prelude without qualification, with no additional prefix, and without hiding any names. So it defines "bare" names and names prefixed by Prelude., and nothing more.
Here ends the bare basics you need to understand about the module system. Now let's discuss the bare basics you need to understand about typeclasses.
A typeclass includes a class name, a list of type variables bound by that class, and a collection of variables with type signatures that refer to the bound variables. Here's an example:
class Foo a where
foo :: a -> a -> Int
The class name is Foo, the bound type variable is a, and there is only one variable in the collection, namely foo, with type signature a -> a -> Int. This class declares that some types have a binary operation, named foo, which computes an Int. Any type may later (even in another module) be declared to be an instance of this class: this involves defining the binary operation above, where the bound type variable a is substituted with the type you are creating an instance for. As an example, we might implement this for integers by the instance:
instance Foo Int where
foo a b = (a `mod` 76) * (b + 7)
Here ends the bare basics you need to understand about typeclasses. We may now answer your question. The only reason the question is tricky is because it falls smack dab on the intersection between two name management techniques: modules and typeclasses. Below I discuss what this means for your specific question.
The module Prelude defines a typeclass named Num, which includes in its collection of variables a variable named *. Therefore, we have several options for the name *:
If the type signature we desire happens to follow the pattern a -> a -> a, for some type a, then we may implement the Num typeclass. We therefore extend the Num class with a new instance; the name Prelude.* and any aliases for this name are extended to work for the new type. For matrices, this would look like, for example,
instance Num Matrix where
m * n = {- implementation goes here -}
We may define a different name than *.
m |*| n = {- implementation goes here -}
We may define the name *. Whether this name is defined as part of a new type class or not is immaterial. If we do nothing else, there will then be at least two definitions of *, namely, the one in the current module and the one implicitly imported from the Prelude. We have a variety of ways of dealing with this. The simplest is to explicitly import the Prelude, and ask for the name * not to be defined:
import Prelude hiding ((*))
You might alternately choose to leave the implicit import of Prelude, and use a qualified * everywhere you use it. Other solutions are also possible.
The main point I want you to take away from this is: the name * is in no way special. It is just a name defined by the Prelude, and all of the tools we have available for namespace control are available.
You can implement * as matrix multiplication by defining an instance of Num class for Matrix. But the code won't be type-safe: * (and other arithmetic operations) on matrices as you define them is not total, because of size mismatch or in case of '/' non-existence of inverse matrices.
As for 'the hierarchy is not defined precisely' - there is also Monoid type class, exactly for the cases when only one operation is defined.
There are too many things to be 'added', sometimes in rather exotic ways (think of permutation groups). Haskell designers designed to reserve arithmetical operations for different representations of numbers, and use other names for more exotic cases.