Error: Cannot write to file opened for READ [duplicate] - visual-studio-code

I have a read/write operation going on in the Fortran code snippet as follows
OPEN(5,FILE='WKDAT.dat', STATUS='OLD')
OPEN(6,FILE='WKLST.dat', STATUS='UNKNOWN')
I know that by default the unit number 5 is used for input from the keyboard and unit number 6 is used to display on the screen. Also I can use *.
But in the above-mentioned Fortran code unit number is 5 and a file name "WKDAT.dat" is given. So this means that the data is being read from "WKDAT.dat" file. Also there is code unit number 6 and a file name "WKLST.dat" is given. So this means that the data is being written to "WKLST.dat" file.
Is my understanding correct?
As per my basic knowledge:
Unit number 5 is only used to take input from keyboard & unit number 6 is only used to print to console so no files should be involved. But in the code snippet it has both unit number 5, 6 as well as file name.
So both are contradicting :(
In this link http://www.oc.nps.edu/~bird/oc3030_online/fortran/io/io.html they have mentioned the following "When I/O is to a file you must ASSOCIATE a UNIT number (which you choose) with the FILENAME. Use any unit number other than 5 and 6. On some computers, some unit numbers are reserved for use by the computer operating system."

Fortran has no magic unit numbers. The Fortran standard says nothing about 5, 6 or any other valid unit number being used for a special purpose. As such you are free to use the open statement to associate any valid unit number with a file. However traditionally for reasons that pre-date me 5 and 6 have been pre-associated with the keyboard and screen, as you say. Now still you can change the association by use of the open statement and that is fine save for the confusion it can cause, so most people I know recommend avoiding this and using unit numbers of 10 and upwards. Also because 5 and 6 are not guaranteed to be associated with the default input and output devices I would recommend against their use, preferring * or, in more modern code, the named constants input_unit, output_unit and error_unit from the iso_fortran_env intrinsic module.
So in summary you've got the right idea, and I'm not surprised you're confused.

Nothing in the standard says units 5 and 6 have any special meaning although in practice standard input and standard output are often pre-connected to 5 and 6.
Module iso_fortran_env from Fortran 2008 contains constants
INPUT_UNIT
OUTPUT_UNIT
ERROR_UNIT
with the unit numbers where standard input, standard output and standard error are connected. These are allowed to be different than 5 and 6.
Opening a file in unit that is in use causes the unit to be associated with the new file.
For example the Cray Fortran manual says:
Unit numbers 100, 101, and 102 are permanently associated with the
standard input, standard output, and standard error files,
respectively.
That means if you open some other file as unit 5 or 6 standard input and standard output still have some other unit where they are pre-connected and they will not be closed.

Related

Compiled COM files with empty project is over 10 KiB large in Turbo Pascal

I have a problem with the binary's size of old Pascal versions.
We need very small simple programs. We would like to use Turbo Pascal 2 in MS-DOS (higher is the same problem) to compile COM files. But the size is always 10 KiB and larger, even for an empty project like:
begin
end.
Compiled file sizes 10052 bytes. I do not understand why. I tested compiler commands, changed stack/heaps with no results.
Compilation output:
Compiling --> c:emtpy.com
3 lines
code: 0002 paragraphs (32 bytes), 0D7B paragraphs free
data: 0000 paragraphs (0 bytes), 0FE7 paragraphs free
stack/heap: 0400 paragraphs (16384 bytes) (minimum)
4000 paragraphs (262144 bytes) (maximum)
Is it possible to get a smaller COM file, and is it possible to convert the Pascal code automatically into ASM code?
Any version of Turbo Pascal up to 3.02 will result into an executable file which includes the whole Run-Time Library. As you discovered, the size of it for TP2 on your target operating system is about 10,050 bytes.
We need very small simple programs.
... then Turbo Pascal 2 is not a good option to start up. Better try with any version from 4 up, if you want to stick with Pascal and are targeting MS-DOS. Or switch to C or assembly language, which will be able to produce smaller executables, at the cost of being more difficult to develop.
[...] is it possible to convert the Pascal code automatically into ASM code.
It can be done using Turbo Pascal but it is not practical (basically you need a disassembler; IDA is such a tool, used nowadays; the version you need is not free.) Also you won't gain much by smashing some bytes from an already compiled application: you will end much better starting it straight in assembly language.
Anyway, the best course to achieve it is to drop Turbo Pascal and go to Free Pascal, which compiler produces .s files, which are written in assembly language (although maybe not in the the same syntax as you are used.) There is (was?) a sub-project to target the 16-bit i8086 processor, which seems reasonably up-to-date (I never tried it.)
Update
You mentioned in a comment you really need the .COM format (which Turbo Pascal 4-7 does not support directly). The problem then is about the memory model. .COM programs are natively using the so-called tiny model (16-bit code and data segments overlapping at the same location), but it can be somewhat evaded for application (not TSR) which can grab all the available memory; TP 1-3 for MS-DOS uses a variant of the compact model (data pointers are 32-bit "far" but code pointers are 16-bit "near", which caps at 64 Ki bytes of code); TP 4-7 are instead using the large model where each unit have a separate code segment. It could be possible to rewrite the Run-Time Library to use only one code segment, then relink the TP-produced executables to convert the FAR CALLs into NEAR CALLs (that one is easy since all the information is in the relocation table of the .EXE). However, you will be home sooner using directly Free Pascal, which supports natively the tiny memory model and can produce .COM executables; while still being highly compatible with Turbo Pascal.

Programming in QuickBasic with repl.it?

I'm trying to get a "retro-computing" class open and would like to give people the opportunity to finish projects at home (without carrying a 3kb monstrosity out of 1980 with them) I've heard that repl.it has every programming language, does it have QuickBasic and how do I use it online? Thanks for the help in advance!
You can do it (hint: search for QBasic; it shares syntax with QuickBASIC), but you should be aware that it has some limitations as it's running on an incomplete JavaScript implementation. For completeness, I'll reproduce the info from the original blog post:
What works
Only text mode is supported. The most common commands (enough to run
nibbles) are implemented. These include:
Subs and functions
Arrays
User types
Shared variables
Loops
Input from screen
What doesn't work
Graphics modes are not supported
No statements are allowed on the same line as IF/THEN
Line numbers are not supported
Only the built-in functions used by NIBBLES.BAS are implemented
All subroutines and functions must be declared using DECLARE
This is far from being done. In the comments, AC0KG points out that
P=1-1 doesn't work.
In short, it would need another 50 or 100 hours of work and there is
no reason to do this.
One caveat that I haven't been able to determine is a statement like INPUT or LINE INPUT... They just don't seem to work for me on repl.it, and I don't know where else one might find qb.js hosted.
My recommendation: FreeBASIC
I would recommend FreeBASIC instead, if possible. It's essentially a modern reimplementation coded in C++ (last I knew) with additional functionality.
Old DOS stuff like the DEF SEG statement and VARSEG function are no longer applicable since it is a modern BASIC implementation operating on a 32-bit flat address space rather than 16-bit segmented memory. I'm not sure what the difference between the old SADD function and the new StrPtr function is, if there is any, but the idea is the same: return the address of the bytes that make up a string.
You could also disable some stuff and maintain QB compatibility using #lang "qb" as the first line of a program as there will be noticeable differences when using the default "fb" dialect, or you could embrace the new features and avoid the "qb" dialect, focusing primarily on the programming concepts instead; the choice is yours. Regardless of the dialect you choose, the basic stuff should work just fine:
DECLARE SUB collatz ()
DIM SHARED n AS INTEGER
INPUT "Enter a value for n: ", n
PRINT n
DO WHILE n <> 4
collatz
PRINT n
LOOP
PRINT 2
PRINT 1
SUB collatz
IF n MOD 2 = 1 THEN
n = 3 * n + 1
ELSE
n = n \ 2
END IF
END SUB
A word about QB64
One might argue that there is a much more compatible transpiler known as QB64 (except for some things like DEF FN...), but I cannot recommend it if you want a tool for students to use. It's a large download for Windows users, and its syntax checking can be a bit poor at times, to the point that you might see the QB code compile only to see a cryptic message like "C++ compilation failed! See internals\temp\compile.txt for details". Simply put, it's usable and highly compatible, but it needs some work, like the qb.js script that repl.it uses.
An alternative: DOSBox and autorun
You could also find a way to run an actual copy of QB 4.5 in something like DOSBox and simply modify the autorun information in the default DOSBox.conf (or whatever it's called) to automatically launch QB. Then just repackage it with the modified DOSBox.conf in a nice installer for easy distribution (NSIS, Inno Setup, etc.) This will provide the most retro experience beyond something like a FreeDOS virtual machine as you'll be dealing with the 16-bit segmented memory, VGA, etc.—all emulated of course.

How to run a disassembled code 6502?

I have to program in assembly the 6502.
I was forced to use the emulator Vice 128
I was told that the Commodore 128 is compatible with the instructions of 6502
I am a novice and I was made a practical demonstration but I did not understand anything.
There was an interface of 80 columns which passed with a command (which one?)
The instructions in machine language or assembly (the program)
were entered directly on this matrix of 80 columns.
Also the data are entered in this matrix.
So is this matrix the memory? Each line represents what?
I was told that this is disassembled code 6502. But I do not know what it means
I'm very confused
I want to run this simple program that
performs the sum of two numbers.
The two numbers are stored in the first page to the word zero and to the word one. I want to store the result in the second word of the first page.
I imagined that the first line contains 80 words. Is that right?
So I put here the data in hexadecimal (3 and 2).
$03 $02
LDA $00
ADC $01
STA $02
But I have a syntax error.
I hope someone can help me because it escapes me how things work.
Thanks in advance
Fir'st, in 6502, we use we deal with bytes, not words. (it's an 8 bit architecture)
You don't mention which macro assembler you are using, but I assume that its trying to interpret $03 as an op code, not data. I looked up two options
in ca65 you can use
.BYTE $03 $02
in dasm you use
HEX 03 02
In addition, 6502 has no concept of 80 anything (words, lines whatever). The only 80 I can think of is the old terminals that had 80 columns. I don't see how this is relevant here.
How to run a disassembled code 6502?
You have to assemble back the code.
Each 6502 instruction stands for 1, 2, or 3 bytes, the first is called the opcode, the optional second or third is the data used by the instruction (the operand).
You need a program to translate the instruction mnemonics to bytes. There were many such programs on the Commodore.
The Commodore 128 had a built-in monitor that let you enter instructions to assemble directly. You can enter it by typing MONITOR at the BASIC prompt. You would need to first set the address, then use "assemble" commands. Then use the "go" command at the starting address to run it. Use BASIC POKE command to set locations containing data, before you enter the monitor. The address 0B00 is a good address to use as it's the tape buffer which is unused except during tape I/O.
Good luck.

Different hashes for Keccak / SHA-3 with several programs?

I am developing the keccak sponge function and have some strange behaviour about the hash result.
I use the string "abc" with 24 bits (3 bytes).
The test vectors for SHA-3 on http://www.di-mgt.com.au/sha_testvectors.html say that the result of SHA3-512 is following:
SHA3-512 from Test Vector
b751850b1a57168a 5693cd924b6b096e 08f621827444f70d 884f5d0240d2712e 10e116e9192af3c9 1a7ec57647e39340 57340b4cf408d5a5 6592f8274eec53f0
I also used cryptopp version 5.62 and it gives me this output:
CryptoPP
18587dc2ea106b9a1563e32b3312421ca164c7f1f07bc922a9c83d77cea3a1e5d0c69910739025372dc14ac9642629379540c17e2a65b19d77aa511a9d00bb96
I use HashTab 5.2.0.14 on Windows and it gives me for a file with "abc" the same output:
HashTab 5.2.0.14 18587dc2ea106b9a1563e32b3312421ca164c7f1f07bc922a9c83d77cea3a1e5d0c69910739025372dc14ac9642629379540c17e2a65b19d77aa511a9d00bb96
So, there are some references but one of them is different to the others. It is explained on the website, that the input message is attached with 2 bits "10" defined in the FIPS-202 draft. So, CryptoPP and HashTab use maybe another implementation but which one??
Now I have my program and the "reference code" from the keccak site and also another implementation in python:
My program returns this hash value for "abc":
My Program
20FF13D217D5789FA7FC9E0E9A2EE627363EC28171D0B6C52BBD2F240554DBC94289F4D61CB57DF72DF08AAC4366022D5DF23E703B8FDFF6306021DB4D5E6760
This is the keccak reference code (http://keccak.noekeon.org/KeccakReferenceAndOptimized-3.2.zip) on the http://keccak.noekeon.org/files.html which calculates the same value:
Keccak-Reference 3.2
Message of size 2040 bits with Keccak[r=1024, c=576]
20FF13D217D5789FA7FC9E0E9A2EE627363EC28171D0B6C52BBD2F240554DBC94289F4D61CB57DF72DF08AAC4366022D5DF23E703B8FDFF6306021DB4D5E6760 (truncated to the same length)
This is the python implementation from https://github.com/mgoffin/keccak-python/blob/master/Keccak.py resulting in the same value:
keccak-python
Value after squeezing : 20FF13D217D5789FA7FC9E0E9A2EE627363EC28171D0B6C52BBD2F240554DBC94289F4D61CB57DF72DF08AAC4366022D5DF23E703B8FDFF6306021DB4D5E67601173D04BF5AEC3EBBCA87696355C5FB4D72D00D2CC4F843A0A3A0ED8924A16FC37769A3DB7C3A84F31E92375A7D74A0136D80A647FBC5AF8D733B43873A3709F
So my questions:
1) Is it true that Keccak and SHA-3 have different outputs based on the specification NIST made with FIPS 202?
2) Why do I have now three different hash values which are not unique?
3) Is the capacity changed in SHA3-512 so that it has 512 bits capacity and 1600-512 bitrate? This is another difference I read on a presentation about SHA-3 but I did not find it in the FIPS-202 document.
Thank you very much!
Regards,
Burak
2)
Like mentioned in https://crypto.stackexchange.com/questions/15727/what-are-the-key-differences-between-the-draft-sha-3-standard-and-the-keccak-sub
FIPS 202 was changed on April 7, 2014.
The last release from CryptoPP is from 2/20/2013 (which was the first release including SHA3)
see http://www.cryptopp.com/
This explains why CryptoPP produces a different hash compared to actual test vectors. I think same will apply for HashTab.

Difference between machine language, binary code and a binary file

I'm studying programming and in many sources I see the concepts: "machine language", "binary code" and "binary file". The distinction between these three is unclear to me, because according to my understanding machine language means the raw language that a computer can understand i.e. sequences of 0s and 1s.
Now if machine language is a sequence of 0s and 1s and binary code is also a sequence of 0s and 1s then does machine language = binary code?
What about binary file? What really is a binary file? To me the word "binary file" means a file, which consists of binary code. So for example, if my file was:
010010101010010
010010100110100
010101100111010
010101010101011
010101010100101
010101010010111
Would this be a binary file? If I google binary file and see Wikipedia I see this example picture of binary file which confuses me (it's not in binary?....)
Where is my confusion happening? Am I mixing file encoding here or what? If I were to ask one to SHOW me what is machine language, binary code and binary file, what would they be? =) I guess the distinction is too abstract to me.
Thnx for any help! =)
UPDATE:
In Python for example, there is one phrase in a file I/O tutorial, which I don't understand: Opens a file for reading only in binary format. What does reading a file in binary format mean?
Machine code and binary are the same - a number system with base 2 - either a 1 or 0. But machine code can also be expressed in hex-format (hexadecimal) - a number system with base 16. The binary system and hex are very interrelated with each other, its easy to convert from binary to hex and convert back from hex to binary. And because hex is much more readable and useful than binary - it's often used and shown. For instance in the picture above in your question -uses hex-numbers!
Let say you have the binary sequence 1001111000001010 - it can easily be converted to hex by grouping in blocks - each block consisting of four bits.
1001 1110 0000 1010 => 9 14 0 10 which in hex becomes: 9E0A.
One can agree that 9E0A is much more readable than the binary - and hex is what you see in the image.
I'm honestly surprised to not see the information I was looking for, looking back though, I guess the title of this thread isn't fully appropriate to the question the OP was asking.
You guys all say "Machine Code is a bunch of numbers".
Sure, the "CODE" is a bunch of numbers, but what people are wondering (I'm guessing) is "what actually is happening physically?"
I'm quite a novice when it comes to programming, but I understand enough to feel confident in 'roughly' answering this question.
Machine code, to the actual circuitry, isn't numbers or values.
Machine code is a bunch of voltage gates that are either open or closed, and depending on what they're connected to, a certain light will flicker at a certain time etc.
I'm guessing that the "machine code" dictates the pathway and timing for specific electrical signals that will travel to reach their overall destination.
So for 010101, 3 voltage gates are closed (The 0's), 3 are open (The 1's)
I know I'm close to the right answer here, but I also know it's much more sophisticated - because I can imagine that which I don't know.
010101 would be easy instructions for a simple circuit, but what I can't begin to fathom is how a complex computer processes all of the information.
So I guess let's break it down?
x-Bit-processors tell how many bits the processor can process at once.
A bit is either 1 or 0, "On" or "Off", "Open" or "Closed"
so 32-bit processors process "10101010 10101010 10101010 10101010" - this many bits at once.
A processor is an "integrated circuit", which is like a compact circuit board, containing resistors/capacitors/transistors and some memory. I'm not sure if processors have resistors but I know you'll usually find a ton of them located around the actual processor on the circuit board
Anyways, a transistor is a switch so if it receives a 1, it sends current in one direction, or if it receives a 0, it'll send current in a different direction... (or something like that)
So I imagine that as machine code goes... the segment of code the processor receives changes the voltage channels in such a way that it sends a signal to another part of the computer (why do you think processors have so many pins?), probably another integrated circuit more specialized to a specific task.
That integrated circuit then receives a chunk of code, let's say 2 to 4 bits 01 or 1100 or something, which further defines where the final destination of the signal will end up, which might be straight back to the processor, or possibly to some output device.
Machine code is a very efficient way of taking a circuit and connecting it to a lightbulb, and then taking that lightbulb out of the circuit and switching the circuit over to a different lightbulb
Memory in a computer is highly necessary because otherwise to get your computer to do anything, you would need to type out everything (in machine code). Instead, all of the 1's and 0's are stored inside some storage device, either a spinning hard disk with a magnetic head pin that 'reads' 1's or 0's based on the charge of the disk, or a flash memory device that uses a series of transistors, where sending a voltage through elicits 1's and 0's (I'm not fully aware how flash memory works)
Fortunately, someone took the time to think up a different base number system for programming (hex), and a way to compile those numbers (translate them) back into binary. And then all software programs have branched out from there.
Each key on the keyboard creates a specific signal in binary that translates to
a bunch of switches being turned on or off using certain voltages, so that a current could be run through the specific individual pixels on your screen that create "1" or "0" or "F", or all the characters of this post.
So I wonder, how does a program 'program', or 'make' the computer 'do' something... Rather, how does a compiler compile a program of a code different from binary?
It's hard to think about now because I'm extremely tired (so I won't try) but also because EVERYTHING you do on a computer is because of some program.
There are actively running programs (processes) in task manager. These keep your computer screen looking the way you've become accustomed, and also allow for the screen to be manipulated as if to say the pictures on the screen were real-life objects. (They aren't, they're just pictures, even your mouse cursor)
(Ok I'm done. enough editing and elongating my thoughts, it's time for bed)
Also, what I don't really get is how 0's are 'read' by the computer.
It seems that a '0' must not be a 'lack of voltage', rather, it must be some other type of signal
Where perhaps something like 1 volt = 1, and 0.5 volts = 0. Some distinguishable difference between currents in a circuit that would still send a signal, but could be the difference between opening and closing a specific circuit.
If I'm close to right about any of this, serious props to the computer engineers of the world, the level of sophistication is mouthwatering. I hope to know everything about technology someday. For now I'm just trying to get through arduino.
Lastly... something I've wondered about... would it even be possible to program today's computers without the use of another computer?
Machine language is a low-level programming language that generally consists entirely of numbers. Because they are just numbers, they can be viewed in binary, octal, decimal, hexadecimal, or any other way. Dave4723 gave a more thorough explanation in his answer.
Binary code isn't a very well-defined technical term, but it could mean any information represented by a sequence of 1s and 0s, or it could mean code in a machine language, or it could mean something else depending on context.
Technically, all files are stored in binary, we just don't usually look at the binary when we view a file. However, the term binary file is usually used to refer to any non-text file; e.g. an .exe, a .png, etc.
You have to understand how a computer works in its basic principles and this will clear things up for you... Therefore I recommend on reading into stuff like Neumann Architecture
Basically in a very simple computer you only have one memory like an array
which has instructions for your processor, the data and everything is a binary numbers.
Your program starts at a certain place in your memory and reads the first number...
so here comes the twist: these numbers can be instructions or data.
Your processor reads these numbers and interprets them as instructions
Example: the start address is 0
in 0 is a instruction like "read value from address 120 into the ALU (Math-Unit)
then it steps to address 1
"read value from address 121 into ALU"
then it steps to address 2
"subtract numbers in ALU"
then it steps to address 3
"if ALU-Value is smaller than zero go to address 10"
it is not smaller than zero so it steps to address 4
"go to address 20"
you see that this is a basic if(a < b)
You can write these instructions as numbers and they can be run by your processor but because nobody wants to do this work (that was what they did with punchcards in the 60s)
assembler was invented...
that looks like:
add 10 ,11, 20 // load var from address 10 and 11; run addition and store into address 20
In Conclusion:
Assembler (processor instructions) can be called binary because it's stored in plain numbers
But everything else can be a Binary file, too.
In reality if you have a simple .exe file it is both... If you have variables in there like a = 10 and b = 20, these values can be stored some where between if clauses and for loops... It depends on the compiler where it put these
But if you have a complex 3D-model it can be stored in a separate file with no executable code in it...
I hope it helps to clear things up a little.