Publisher emitting progress of operation and final value - swift

Given I have an SDK which provides the functionality below
class SDK {
static func upload(completion: #escaping (Result<String, Error>) -> Void) {
DispatchQueue.main.asyncAfter(deadline: .now() + 1) {
completion(.success("my_value"))
}
}
}
I am able to a create a wrapper around to make its usage more functional
class CombineSDK {
func upload() -> AnyPublisher<String, Error> {
Future { promise in
SDK.upload { result in
switch result {
case .success(let key):
promise(.success(key))
case .failure(let error):
promise(.failure(error))
}
}
}.eraseToAnyPublisher()
}
}
Now I'm trying to understand how my CombineSDK.upload method should look like if the SDK upload method also provides a progress block like below:
class SDK {
static func upload(progress: #escaping (Double) -> Void, completion: #escaping (Result<String, Error>) -> Void) {
DispatchQueue.main.asyncAfter(deadline: .now() + 0.5) {
progress(0.5)
}
DispatchQueue.main.asyncAfter(deadline: .now() + 1) {
progress(1)
}
DispatchQueue.main.asyncAfter(deadline: .now() + 1) {
completion(.success("s3Key"))
}
}
}

We need an Output type for your publisher that represents either the progress, or the final value. So we should use an enum. Since the Foundation framework already defines a type named Progress, we'll name ours Progressable to avoid a name conflict. We might as well make it generic:
enum Progressable<Value> {
case progress(Double)
case value(Value)
}
Now we need to think about how the publisher should behave. A typical publisher, like URLSession.DataTaskPublisher, doesn't do anything until it gets a subscription, and it starts its work fresh for each subscription. The retry operator only works if the upstream publisher behaves like this.
So our publisher should behave that way, too:
extension SDK {
static func uploadPublisher() -> UploadPublisher {
return UploadPublisher()
}
struct UploadPublisher: Publisher {
typealias Output = Progressable<String>
typealias Failure = Error
func receive<S>(subscriber: S) where S : Subscriber, Self.Failure == S.Failure, Self.Output == S.Input {
<#code#>
}
}
}
Creating the publisher (by calling SDK.uploadPublisher()) doesn't start any work. We'll replace <#code#> with code to start the upload:
extension SDK {
static func uploadPublisher() -> UploadPublisher {
return UploadPublisher()
}
struct UploadPublisher: Publisher {
typealias Output = Progressable<String>
typealias Failure = Error
func receive<S>(subscriber: S) where S : Subscriber, Self.Failure == S.Failure, Self.Output == S.Input {
let subject = PassthroughSubject<Output, Failure>()
subject.receive(subscriber: subscriber)
upload(
progress: { subject.send(.progress($0)) },
completion: {
switch $0 {
case .success(let value):
subject.send(.value(value))
subject.send(completion: .finished)
case .failure(let error):
subject.send(completion: .failure(error))
}
}
)
}
}
}
Note that we call subject.receive(subscriber: subscriber) before we start the upload. This is important! What if upload calls one of its callbacks synchronously, before returning? By passing the subscriber to the subject before calling upload, we ensure that the subscriber has the chance to be notified even if upload calls its callbacks synchronously.

Note: started writing an answer that's has a largely similar intent to #robmayoff's answer, but using Deferred, so posting here for completeness.
Swift Combine only works with values and errors - there's no separate type for progress. But you can model the progress as part of the output, either as a tuple, as was suggested in another answer, or as a custom enum with both progress and result as cases, which would be my preferred approach.
class CombineSDK {
enum UploadProgress<T> {
case progress(Double)
case result(T)
}
func upload() -> AnyPublisher<UploadProgress<String>, Error> {
Deferred { () -> AnyPublisher<UploadProgress<String>, Error> in
let subject = PassthroughSubject<UploadProgress<String>, Error>()
SDK.upload(
progress: { subject.send(.progress($0)) },
completion: { r in
let _ = r.map(UploadProgress.result).publisher.subscribe(subject)
})
return subject.eraseToAnyPublisher()
}
.eraseToAnyPublisher()
}
}
EDIT
Based on #robmayoff's comment, the above solution doesn't handle synchronous case where subject.send is called before subject is returned.
The solution is largely the same, but it does introduce a small complication of having to capture these values, just in case. This can be done with Record, which will provide a temporary sink to subject
func upload() -> AnyPublisher<UploadProgress<String>, Error> {
Deferred { () -> AnyPublisher<UploadProgress<String>, Error> in
let subject = PassthroughSubject<UploadProgress<String>, Error>()
var recording = Record<UploadProgress<String>, Error>.Recording()
subject.sink(
receiveCompletion: { recording.receive(completion: $0) },
receiveValue: { recording.receive($0) })
SDK.upload(
progress: { subject.send(.progress($0)) },
completion: { r in
let _ = r.map(UploadProgress.result).publisher.subscribe(subject)
})
return Record(recording: recording).append(subject).eraseToAnyPublisher()
}
.eraseToAnyPublisher()
}

Here is possible approach
extension CombineSDK {
func upload() -> AnyPublisher<(Double, String?), Error> {
let publisher = PassthroughSubject<(Double, String?), Error>()
SDK.upload(progress: { value in
publisher.send((value, nil))
}, completion: { result in
switch result {
case .success(let key):
publisher.send((1.0, key))
publisher.send(completion: .finished)
case .failure(let error):
publisher.send(completion: .failure(error))
}
})
return publisher.eraseToAnyPublisher()
}
}

Related

Create a publisher that emits a value on completion of another publisher

I have a publisher that never emits items and only completes or fails with an error (AnyPublisher<Never, Error>). I want to transform that publisher into a publisher that emits a value when the first publisher completes (AnyPublisher<Value, Error>), or passes through any error. I want to create that value after completion of the first publisher. I could do something like this, but it seems quite messy:
func demo() -> AnyPublisher<Int, Error> {
// Using Empty just for demo purposes
let firstPublisher = Empty<Never, Error>(completeImmediately: true).eraseToAnyPublisher()
var cancellable: AnyCancellable?
return Future<Int, Error> { promise in
cancellable = firstPublisher
.sink { completion in
switch completion {
case .failure(let error):
promise(.failure(error))
case .finished:
// some operation that generates value
let value:Int = 1
promise(.success(value))
}
} receiveValue: { _ in
}
}
.handleEvents(receiveCancel: {
cancellable?.cancel()
})
.eraseToAnyPublisher()
}
Can this be done a better way? Something like:
extension AnyPublisher {
func completionMap<T, P>(_: (_ completion: Subscribers.Completion<Self.Failure>) -> P) -> P where P: Publisher, T == P.Output, Self.Failure == P.Failure {
/// ???
}
}
func demo() -> AnyPublisher<Int, Error> {
// Using Empty just for demo purposes
let firstPublisher = Empty<Never, Error>(completeImmediately: true).eraseToAnyPublisher()
return firstPublisher
.completionMap { completion -> AnyPublisher<Int, Error> in
switch completion {
case .failure(let error):
return Fail(error: error).eraseToAnyPublisher()
case .finished:
// some operation that generates value
let value:Int = 1
return Just(value).setFailureType(to: Error.self).eraseToAnyPublisher()
}
}.eraseToAnyPublisher()
}
You could use .append (which returns a Publishers.Concatenate) as a way to emit a value after the first publisher completes.
let firstPublisher: AnyPublisher<Never, Error> = ...
let demo = firstPublisher
.map { _ -> Int in }
.append([1])
The above will emit 1 if firstPublisher completes successfully, or would error out.

Observable extension with generic type

Context
I want to wrap the Alamofire.upload into an observable and having info regarding the upload progress.
For that I have created a custom UploadElement that is an enum representing either the progress and the value or the result. So far I have:
enum UploadElement<Result> where Result: Codable {
case progress(Double)
case response(Result)
}
private func buildUploadRequest(url: URL, parts: [Data]) -> Observable<UploadRequest> {
let uploadRequest = manager.upload(
multipartFormData: { multipartFormData in /* build multipart */ },
to: url
)
return Observable.just(uploadRequest)
}
func upload<Result: Codable>(url: URL, parts: [Data]) -> Observable<UploadElement<Result>> {
buildUploadRequest(url: url, parts: parts)
.flatMap { request in
Observable<UploadElement<Result>>.create { observer in
request.response { response in
do {
observer.on(.next(.response(/* decode here */)))
observer.on(.completed)
} catch let error {
observer.on(.error(error))
}
}.uploadProgress { progress in
observer.on(.next(.progress(progress.fractionCompleted)))
}
.resume()
return Disposable.create { request.cancel() }
}
}
}
Now I would like to have an extension on an Observable<UploadEment<Result>> to have a nicer way to be notified.
Basically it would be:
service.upload(url: ..., parts: ...)
.progress { progress in /* */ }
.result { result in /* */ }
.subscribe()
.dispose(by: disposeBag)
To do that I tried:
extension ObservableType where Element == UploadElement<Resource> {
func progress(progressCompletion: #escaping (Double) -> Void) -> Self {
return self.do(onNext: { element in
switch element {
case .progress(let progress): progressCompletion(progress)
case .response: return
}
})
}
func result(resultCompletion: #escaping (Result) -> Void) -> Self {
return self.do(onNext: { element in
switch element {
case .response(let result): resultCompletion(result)
case .progress: return
}
})
}
}
I tried multiple variation of that but the errors that I get are:
Cannot find 'Result in scope'
Reference to generic type ... required argument
Is it possible to achieve something like that?
You just need to move the where clause from class scope down to function scope (shown below).
That said, I don't think breaking out of the monad like this in the middle of a stream is "a nicer way to be notified".
Better would be to break your Observable into two streams and subscribe to each of them:
extension ObservableType {
func progress<Resource>() -> Observable<Double> where Element == UploadElement<Resource> {
self.compactMap { element in
switch element {
case let .progress(progress):
return progress
case .response:
return nil
}
}
}
func result<Resource>() -> Observable<Resource> where Element == UploadElement<Resource> {
self.compactMap { element in
switch element {
case .progress:
return nil
case let .response(resource):
return resource
}
}
}
}
With the above you can now do something like this:
let response = service.upload(url: ..., parts: ...)
.share()
response
.progress()
.subscribe(onNext: { progress in /*...*/ })
.disposed(by: disposeBag)
response
.result()
.subscribe(onNext: { result in /*...*/ })
.dispose(by: disposeBag)
Now you don't have any empty subscribes.
I found something that is working:
extension ObservableType {
func progress<O: Codable>(progressCompletion: #escaping (Double) -> Void) -> Observable<UploadElement<O>> where Element == UploadElement<O> {
return self.do(onNext: { element in
if case .progress(let progress) = element {
progressCompletion(progress)
}
})
}
func response<O: Codable>(responseCompletion: #escaping (O) -> Void) -> Observable<UploadElement<O>> where Element == UploadElement<O> {
return self.do(onNext: { element in
if case .response(let response) = element {
responseCompletion(response)
}
})
}
}
Now I can use the "planned" api:
service.update(data: /* ... */)
.progress { progress in /* */ }
.response { result in /* */ }
.subscribe(
onError: { error in /* */ }
)
.dispose(by: disposeBag)
However as Daniel mentioned this might not be the "nicer way of being notified".

Writing a retryIf operator with Swift's Combine framework

I'm getting to know Swift + Swift's Combine framework and wanted to check that my attempt at implementing a retryIf(retries:, shouldRetry:) operator makes sense. In particular, I'm curious if all the .eraseToAnyPublishers are expected/idiomatic.
extension Publisher {
func retryIf(retries: Int, shouldRetry: #escaping (Self.Failure) -> Bool) -> AnyPublisher<Self.Output, Self.Failure> {
self.catch { error -> AnyPublisher<Self.Output, Self.Failure> in
guard shouldRetry(error) && retries > 0 else {
return Fail(error: error).eraseToAnyPublisher()
}
return self.retryIf(retries: retries - 1, shouldRetry: shouldRetry).eraseToAnyPublisher()
}.eraseToAnyPublisher()
}
}
Assuming that all the AnyPublishers are ok, when do you want to make your own Publisher struct? For example, the regular Combine operator retry returns a Retry<Upstream> struct rather than an AnyPublisher, but I imagine you could implement it along the same lines as the code above, something like:
extension Publisher {
func doOver(tries: Int) -> AnyPublisher<Self.Output, Self.Failure> {
self.catch { error -> AnyPublisher<Self.Output, Self.Failure> in
guard tries > 0 else { return Fail(error: error).eraseToAnyPublisher() }
return self.doOver(tries: tries - 1).eraseToAnyPublisher()
}.eraseToAnyPublisher()
}
}
You can eliminate the final eraseToAnyPublisher, and thus the heap allocation it requires, by defining your own Publisher. For example:
extension Publisher {
func retry(_ retries: Int, if shouldRetry: #escaping (Failure) -> Bool) -> MyPublishers.RetryIf<Self> {
return .init(upstream: self, triesLeft: retries, shouldRetry: shouldRetry)
}
}
enum MyPublishers { }
extension MyPublishers {
struct RetryIf<Upstream: Publisher>: Publisher {
typealias Output = Upstream.Output
typealias Failure = Upstream.Failure
init(upstream: Upstream, triesLeft: Int, shouldRetry: #escaping (Failure) -> Bool) {
self.upstream = upstream
self.triesLeft = triesLeft
self.shouldRetry = shouldRetry
}
var upstream: Upstream
var triesLeft: Int
var shouldRetry: (Failure) -> Bool
func receive<Downstream: Subscriber>(subscriber: Downstream) where Failure == Downstream.Failure, Output == Downstream.Input {
upstream
.catch {
triesLeft > 0 && shouldRetry($0)
? Self(upstream: upstream, triesLeft: triesLeft - 1, shouldRetry: shouldRetry).eraseToAnyPublisher()
: Fail(error: $0).eraseToAnyPublisher()
}
.receive(subscriber: subscriber)
}
}
}
If you want to eliminate the two eraseToAnyPublisher calls inside the catch body, you will have to give up using catch. Instead you will have to implement your own Subscription. Implementing Subscription is much more complicated, because it has to be thread-safe. However, those calls inside the catch body can only happen in the case of an upstream failure, and only one of the calls happens per failure. So if upstream failures are rare, it's probably not worth the effort.

Swift Combine Chunk Operator

I'm trying to create chunks of a stream in Apple's Combine framework.
What I'm going for is something like this:
Stream a:
--1-2-3-----4-5--->
Stream b:
--------0-------0->
a.chunk(whenOutputFrom: b)
-------[1, 2, 3]---[4, 5]-->
Can this be implemented in Combine?
What you are looking for is the buffer operator in the ReactiveX world.
There is no built in buffer operator (in the ReactiveX sense) in Combine. The built-in buffer is seems to be more like a bufferCount in ReactiveX.
I found this answer by Daniel T, which recreates the buffer operator in RxSwift, and also this cheatsheet, which tells you how to port RxSwift to Combine.
However, the answer by Daniel T uses Observable.create, which isn't available in Combine. I looked a bit deeper, and found this other answer, that recreates Observable.create in Combine.
Combining the three things I've found (no pun intended), this is what I came up with:
// -------------------------------------------------
// from https://stackoverflow.com/a/61035663/5133585
struct AnyObserver<Output, Failure: Error> {
let onNext: ((Output) -> Void)
let onError: ((Failure) -> Void)
let onCompleted: (() -> Void)
}
struct Disposable {
let dispose: () -> Void
}
extension AnyPublisher {
static func create(subscribe: #escaping (AnyObserver<Output, Failure>) -> Disposable) -> Self {
let subject = PassthroughSubject<Output, Failure>()
var disposable: Disposable?
return subject
.handleEvents(receiveSubscription: { subscription in
disposable = subscribe(AnyObserver(
onNext: { output in subject.send(output) },
onError: { failure in subject.send(completion: .failure(failure)) },
onCompleted: { subject.send(completion: .finished) }
))
}, receiveCancel: { disposable?.dispose() })
.eraseToAnyPublisher()
}
}
// -------------------------------------------------
// -------------------------------------------------
// adapted from https://stackoverflow.com/a/43413167/5133585
extension Publisher {
/// collects elements from the source sequence until the boundary sequence fires. Then it emits the elements as an array and begins collecting again.
func buffer<T: Publisher, U>(_ boundary: T) -> AnyPublisher<[Output], Failure> where T.Output == U {
return AnyPublisher.create { observer in
var buffer: [Output] = []
let lock = NSRecursiveLock()
let boundaryDisposable = boundary.sink(receiveCompletion: {
_ in
}, receiveValue: {_ in
lock.lock(); defer { lock.unlock() }
observer.onNext(buffer)
buffer = []
})
let disposable = self.sink(receiveCompletion: { (event) in
lock.lock(); defer { lock.unlock() }
switch event {
case .finished:
observer.onNext(buffer)
observer.onCompleted()
case .failure(let error):
observer.onError(error)
buffer = []
}
}) { (element) in
lock.lock(); defer { lock.unlock() }
buffer.append(element)
}
return Disposable {
disposable.cancel()
boundaryDisposable.cancel()
}
}
}
}
// -------------------------------------------------
I think you would be interested in Combine collect() method.
there is variation it it as well such as by time, count or both.
.collect(.byTimeOrCount(DispatchQueue.global(), 1.0, 10))
where we pass context -> for example global queue
time to wait for it such as 1s in above example
and the count of 10 elements.
Use case would look something like this:
let bufferSubject = PassthroughSubject<Int, Never>()
let cancelBag = Set<AnyCancellable>()
let subscriber = bufferSubject.eraseToAnyPublisher()
.collect(.byTimeOrCount(DispatchQueue.global(), 1.0, 10))
.sink { value in
print("🚀🚀 value: \(value)")
}
.store(in: &cancelBag)
be sure to test it :)
bufferSubject.send(1)
bufferSubject.send(2)
bufferSubject.send(3)
...
DispatchQueue.asyncAfter(...) {
bufferSubject.send(4)
bufferSubject.send(5)
bufferSubject.send(6)
}

Swift Combine alternative to Rx Observable.create

I have some code that is built using RxSwift, and I'm playing around with converting it to use Apple's Combine framework.
One pattern which is very common is the use of Observable.create for one-shot observables (usually network requests). Something like this:
func loadWidgets() -> Observable<[Widget]> {
return Observable.create { observer in
// start the request when someone subscribes
let loadTask = WidgetLoader.request("allWidgets", completion: { widgets in
// publish result on success
observer.onNext(widgets)
observer.onComplete()
}, error: { error in
// publish error on failure
observer.onError()
})
// allow cancellation
return Disposable {
loadTask.cancel()
}
}
}
I'm trying to map that across to Combine and I haven't been able to quite figure it out. The closest I've been able to get is using Future for something like this:
func loadWidgets() -> AnyPublisher<[Widget], Error> {
return Future<[Widget], Error> { resolve in
// start the request when someone subscribes
let loadTask = WidgetLoader.request("allWidgets", completion: { widgets in
// publish result on success
resolve(.success(widgets))
}, error: { error in
// publish error on failure
resolve(.failure(error))
})
// allow cancellation ???
}
}
As you can see, it does most of it, but there's no ability to cancel.
Secondarily, future doesn't allow multiple results.
Is there any way to do something like the Rx Observable.create pattern which allows cancellation and optionally multiple results?
I think I found a way to mimic Observable.create using a PassthroughSubject in Combine. Here is the helper I made:
struct AnyObserver<Output, Failure: Error> {
let onNext: ((Output) -> Void)
let onError: ((Failure) -> Void)
let onComplete: (() -> Void)
}
struct Disposable {
let dispose: () -> Void
}
extension AnyPublisher {
static func create(subscribe: #escaping (AnyObserver<Output, Failure>) -> Disposable) -> Self {
let subject = PassthroughSubject<Output, Failure>()
var disposable: Disposable?
return subject
.handleEvents(receiveSubscription: { subscription in
disposable = subscribe(AnyObserver(
onNext: { output in subject.send(output) },
onError: { failure in subject.send(completion: .failure(failure)) },
onComplete: { subject.send(completion: .finished) }
))
}, receiveCancel: { disposable?.dispose() })
.eraseToAnyPublisher()
}
}
And here is how it looks in usage:
func loadWidgets() -> AnyPublisher<[Widget], Error> {
AnyPublisher.create { observer in
let loadTask = WidgetLoader.request("allWidgets", completion: { widgets in
observer.onNext(widgets)
observer.onComplete()
}, error: { error in
observer.onError(error)
})
return Disposable {
loadTask.cancel()
}
}
}
From what I've learned, the support for initializing an AnyPublisher with a closure has been dropped in Xcode 11 beta 3. This would be a corresponding solution for Rx's Observable.create in this case, but for now I believe that the Future is a goto solution if you only need to propagate single value. In other cases I would go for returning a PassthroughSubject and propagating multiple values this way, but it will not allow you to start a task when the observation starts and I believe it's far from ideal compared to Observable.create.
In terms of cancellation, it does not have an isDisposed property similar to a Disposable, so it's not possible to directly check the state of it and stop your own tasks from executing. The only way that I can think of right now would be to observe for a cancel event, but it's surely not as comfortable as a Disposable.
Also, I'd assume that cancel might in fact stop tasks like network requests from URLSession based on the docs here: https://developer.apple.com/documentation/combine/cancellable
Add an isCancelled operation outside the closure and check it in the future's closure. isCancelled can be toggled with the handleEvent() operator.
var isCancelled = false
func loadWidgets() -> AnyPublisher<[Widget], Error> {
return HandleEvents<Future<Any, Error>> { resolve in
// start the request when someone subscribes
let loadTask = WidgetLoader.request("allWidgets", completion: { widgets in
// publish result on success
resolve(.success(widgets))
}, error: { error in
// publish error on failure
resolve(.failure(error))
}
if isCancelled {
loadTask.cancel()
}
).handleEvents(receiveCancel: {
isCancelled = true
})
}
}
and somewhere in the app you do this to cancel the event
loadWidgets().cancel()
Also check this article
Thanks to ccwasden for the inspiration. This replicates Observable.create semantics with a pure Combine implementation without any superfluous entities.
AnyPublisher.create() Swift 5.6 Extension
public extension AnyPublisher {
static func create<Output, Failure>(_ subscribe: #escaping (AnySubscriber<Output, Failure>) -> AnyCancellable) -> AnyPublisher<Output, Failure> {
let passthroughSubject = PassthroughSubject<Output, Failure>()
var cancellable: AnyCancellable?
return passthroughSubject
.handleEvents(receiveSubscription: { subscription in
let subscriber = AnySubscriber<Output, Failure> { subscription in
} receiveValue: { input in
passthroughSubject.send(input)
return .unlimited
} receiveCompletion: { completion in
passthroughSubject.send(completion: completion)
}
cancellable = subscribe(subscriber)
}, receiveCompletion: { completion in
}, receiveCancel: {
cancellable?.cancel()
})
.eraseToAnyPublisher()
}
}
Usage
func doSomething() -> AnyPublisher<Int, Error> {
return AnyPublisher<Int, Error>.create { subscriber in
// Imperative implementation of doing something can call subscriber as follows
_ = subscriber.receive(1)
subscriber.receive(completion: .finished)
// subscriber.receive(completion: .failure(myError))
return AnyCancellable {
// Imperative cancellation implementation
}
}
}