Processing sketches in eclipse not working as expected - eclipse

In eclipse(or VS code) the sketch window is larger than what is defined in the sketch, in the size() function. For example, even though in the code it is size(800,600); the window of the sketch is 1000 X 750, for some reason. Is there a way to fix this. Also the shapes have jagged edges(perhaps because of this resizing).Is their a way to fix this?

I believe this is because Processing is only rendering a quarter of the pixels created for the canvas. This is probably because the pixel density is set to 1. Simply run: pixelDensity(2); and this should fix the problem. If you don't know what the pixel density of your monitor is, run: pixelDensity(displayDensity());
Here's some documentation:
https://processing.org/reference/pixelDensity_.html

Related

Calculating transform-origin of two overlapping elements

I have an image (represented as green) overlaying a box (represented as blue), and the image is going to be transform: scale()ing in size. When this happens I need all edges of the image to complete their transformation at the same time.
To do this I need to calculate the transform-origin based on where the image is located overtop of the bounding box, using JavaScript. Assume I know all the coordinates that getBoundingClientRect() provides, for both elements.
In the six examples below I’ve placed a red dot where the transform-origin percentages should intersect.
I just can’t figure out the math to get there. The closest I've come to finding an answer is with this question, but it's a little vague and I'm not sure I fully understand the answer itself. I would greatly appreciate help with this, and will happily provide more details if I'm missing something.
After fiddling around, I figured out the formula is:
(
(box.left - image.left) /
(image.width - box.width)
) * 100

Matlab: Export a figure made with myaa

I am trying to get better quality phase plots of complex functions made with the Complex Function Explorer of E. Wegert CFE. For this purpose I apply the Matlab anti-aliasing function myaa.m to the phase plots that are made with the CFEGUI.m. For the example screenshot of the result window below I used the setting myaa([8 8]) in the Matlab command window which means that the supersampling enlarge the figure 8x and then downscale it to 1/8 to get the original h x w.
As one can see the window of the figure has no operation icons or menu options for save or print. My question is what to do with such a figure (beside making screenshots)? Can I somehow use export-fig to save such a figure or load it in an image array and if yes, how?
It is also possible to use the setting myaa([8 1]) which results in a very large figure window that is larger than my screen (and has the unpleasant attribute that it can not be moved). It would be even better if such a whole figure could be saved (not only the visible part).
You can use getframe to grab current figure information in pixels.
However, while I do not know how this affects you, notice that MATLAB versions above 2014b (included) have already anti-aliasing. The code you linked seem to be from 2008, I am not 100% sure if it has become obsolete now.

How to visualize correlation matrix as a schemaball in Matlab

I have 42 variables and I have calculated the correlation matrix for them in Matlab. Now I would like to visualize it with a schemaball. Does anyone have any suggestions / experiences how this could be done in Matlab? The following pictures will explain my point better:
In the pictures each parabola between variables would mean the strength of correlation between them. The thicker the line is, the more correlation. I prefer the style of picture 1 more than the style in picture 2 where I have used different colors to highlight the strength of correlation.
Kinda finished I guess.. code can be found here at github.
Documentation is included in the file.
The yellow/magenta color (for positive/negative correlation) is configurable, as well as the fontsize of the labels and the angles at which the labels are plotted, so you can get fancy if you want and not distribute them evenly along the perimeter/group some/...
If you want to actually print these graphs or use them outside matlab, I suggest using vector formats (eg eps). It's also annoying that the text resizes when you zoom in/out, but I don't know of any way to fix that without hacking the zoom function :/
schemaball % demo
schemaball(arrayfun(#num2str,1:10,'uni',false), rand(10).^8,11,[0.1587 0.8750],[0.8333 1],2*pi*sin(linspace(0,pi/2-pi/20,10)))
schemaball(arrayfun(#num2str,1:50,'uni',false), rand(50).^50,9)
I finished and submitted my version to the FEX: schemaball and will update the link asap.
There are a some differences with Gunther Struyf's contribution:
You can return the handles to the graphic object for full manual customization
Labels are oriented to allow maximum left-to-rigth readability
The figure stretches to fit labels in, leaving the axes unchanged
Syntax requires only correlations matrix (but allows optional inputs)
Optimized for performance.
Follow examples of demo, custom labels and creative customization.
Note: the first figure was exported with saveas(), all others with export_fig.
schemaball
x = rand(10).^3;
x(:,3) = 1.3*mean(x,2);
schemaball(x, {'Hi','how','is','your','day?', 'Do','you','like','schemaballs?','NO!!'})
h = schemaball;
set(h.l(~isnan(h.l)), 'LineWidth',1.2)
set(h.s, 'MarkerEdgeColor','red','LineWidth',2,'SizeData',100)
set(h.t, 'EdgeColor','white','LineWidth',1)
The default colormap:
To improve on screen rendering you can launch MATLAB with the experimental -hgVersion 2 switch which produces anti/aliased graphics by default now (source: HG2 update | Undocumented Matlab). However, if you try to save the figure, the file will have the usual old anti-aliased rendering, so here's a printscreen image of Gunther's schemaball:
Important update:
You can do this in Matlab now with the FileExchange submission:
http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph
There is an exmample by Matlab in here:
http://uk.mathworks.com/examples/matlab/3859-circular-graph-examples
Which gives this kind of beautiful plots:
Coincidentally, Cleve Moler (MathWorks Chief Mathematician) showed an example of just this sort of plot on his most recent blog post (not nearly as beautiful as the ones in your example, and the connecting lines are straight rather than parabolic, but it looks functional). Unfortunately he didn't include the code directly, but if you leave him a comment on the post he's usually very willing to share things.
What might be even nicer for you is that he also applies (and this time includes) code to permute the rows/columns of the array in order to maximize the spatial proximity of highly connected nodes, rather than randomly ordering them around the circumference. You end up with a 'crescent'-shaped envelope of connecting lines, with the thick bit of the crescent representing the most highly connected nodes.
Unfortunately however, I suspect that if you need to enhance his code to get the very narrow, high-resolution lines in your example plots, then MATLAB's currently non-anti-aliased graphics aren't quite up to it yet.
I've recently been experimenting with MATLAB data and the D3 visualization library for similar graphs - there are several related types of circular visualizations you may be interested in and many of them are interactive. Another helpful, well-baked, and freely available option is Circos which is probably responsible for most of the prettier versions of these graphs you've seen in popular press.

Using imtophat in MATLAB

I'm trying to do top hat filtering in MATLAB. The imtophat function looks promising, but I have no idea how to use it. I don't have a lot of work with MATLAB before. I am trying to look find basically small spots several pixels wide that are local maxima in my 2 dimensional array.
I think you have more problem undertanding how to use STREL, than IMTOPHAT. The later can be described as simple threshold but per structural element, not the whole image.
Here is another good examples of using STREL and IMTOPHAT:
http://www.mathworks.com/matlabcentral/fx_files/2573/1/content/html/R14_MicroarrayImage_CaseStudy.html
This series of posts on Steve Eddins blog might be useful for you:
http://blogs.mathworks.com/steve/category/dilation-algorithms/
tophat is basically an "opening" procedure followed by a subtraction of the result from the original image. the best and most helpful explanation of opening I've found here:
http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm
"The effect of opening can be quite easily visualized. Imagine taking
the structuring element and sliding it around inside each foreground
region, without changing its orientation. All pixels which can be
covered by the structuring element with the structuring element being
entirely within the foreground region will be preserved. However, all
foreground pixels which cannot be reached by the structuring element
without parts of it moving out of the foreground region will be eroded
away."
The documentation on imtophat has an example .. did you try it? The following images are from the MATLAB documentation.
Code
I = imread('rice.png');
imshow(I)
se = strel('disk',12);
J = imtophat(I,se);
figure, imshow(J,[])
Original
(image source: mathworks.com)
Top Hat with a disk structuring element
(image source: mathworks.com)

MATLAB: impoint getPosition strange behaviour

I have a question about the values returned by getPosition. Below is my code. It lets the user set 10 points on a given image:
figure ,imshow(im);
colorArray=['y','m','c','r','g','b','w','k','y','m','c'];
pointArray = cell(1,10);
% Construct boundary constraint function
fcn = makeConstrainToRectFcn('impoint',get(gca,'XLim'),get(gca,'YLim'));
for i = 1:10
p = impoint(gca);
% Enforce boundary constraint function using setPositionConstraintFcn
setPositionConstraintFcn(p,fcn);
setColor(p,colorArray(1,i));
pointArray{i}=p;
getPosition(p)
end
When I start to set points on the image I get results like [675.000 538.000], which means that the x part of the coordinate is 675 and the y part is 538, right? This is what the MATLAB documentation says, but since the image is 576*120 (as displayed in the window) this is not logical.
It seemed to me like, somehow, getPosition returns the y coordinate first. I need some clarification on this.
Thanks for help
I just tried running your code in MATLAB 7.8.0 (R2009a) and had no problems with image sizes of either 576-by-120 or 120-by-576 (I was unsure which orientation you were using). If I left click inside the image, it places a new movable point. It did not allow me to place any points outside the image.
One small bug I found was that if you left-click in the image, then drag the mouse pointer outside the image while still holding the left button down, it will place the movable point outside the image and won't display it, displaying a set of coordinates that are not clipped to the axes rectangle.
I'm not sure of what could be your problem. Perhaps it's a bug with whatever MATLAB version you are using. I would suggest either restarting MATLAB, or clearing all variables from the workspace (except for the image data im).
Might be worth checking to see which renderer you are using (Painter or OpenGL), a colleague showed me some wierd behaviour with point picking when using the OpenGL renderer which went away when using the Painter renderer.
Your code uses the Image Processing Toolbox, which I don't have, so this is speculation. The coordinate system is probably set to the figure window (or maybe even the screen), not the image.
To test this, try clicking points outside the image to see if you can find the origin.