I've been trying to make a really basic fps character controller script, but I couldn't solve the movement stacking when I'm moving sideways. I'm sure it's really basic solutin, but as a beginner it's hard for me to solve it.
float forwardSpeed = Input.GetAxis("Vertical") * movementspeed;
float sideSpeed = Input.GetAxis("Horizontal") * movementspeed;
Vector3 VecForwardSpeed = new Vector3(sideSpeed, verticalVelocity, forwardSpeed);
VecForwardSpeed = transform.rotation * VecForwardSpeed;
characterController.Move(VecForwardSpeed * Time.deltaTime);
If I understand you correctly what you mean is if moving forward and sidewards at the same time these inputs/velocities "stack" or sum up allowing the user to move faster then actually allowed.
You could solve this by normalizing them meaning you make sure that combined they never exceed a magnitude value of 1 like e.g.
// Get a vector of the combined input
var combinedInput = new Vector2(Input.GetAxis("Horizontal"), Input.GetAxis("Vertical"));
// Check if the magnitude exceeds 1
// sqrMagnitude is more efficient here and for comparing to 1
// behaves the same as magnitude
if(combinedInput.sqrMagnitude > 1)
{
// If so normalize the input vector to force it again
// to have the maximum length/magnitude of 1
combinedInput.Normalize();
}
// Until then apply the movementspeed here
combinedInput *= movementspeed;
// Now use the components of this combined and evtl normalized input vector instead
var vecForwardSpeed = transform.rotation * new Vector3(combinedInput.x, verticalVelocity, combinedInput.y) * Time.deltaTime;
characterController.Move(vecForwardSpeed);
From your question it is not sure though how the verticalVelocity comes into play.
Related
I'm struggling with probably simple math to spin/rotate a wheel using drag&drop.
There is a Radial Layout in a Canvas (Unity UI) and it can already be rotated by setting a property called StartAngle that is in a range from 0-360. In this Radial there are items, so the StartAngle is for the first item and places all the child elements around the layout radius.
I want to implement drag & drop for the items so that you can drag a child around and the Radial will spin accordingly (infinitely).
Right now, I have this as a starting point:
public void OnDrag(PointerEventData eventData)
{
var delta = eventData.delta.x * Time.deltaTime;
var newAngle = radialLayout.StartAngle + delta;
if (newAngle >= 360)
newAngle = newAngle - 360;
else if (newAngle < 0)
newAngle = Mathf.Abs(360 - newAngle);
radialLayout.StartAngle = newAngle;
}
It kind of works but doesn't feel very smooth. This is for mobile/touch, so I want both the X and Y delta of the drag operation to be taken into account. Apparently, the y delta is not considered in my example and I have no idea how to incorporate this correctly. The user might do a linear drag & drop on either axis or he/she might also do like a circular drag movement.
So how can I map mouse movement to a rotation angle from 0-360 so that it feels good?
Edit: Thanks for the help, I did it like this now:
public void OnDrag(PointerEventData eventData)
{
// Note the "Head-Minus-Tale rule for Vector subtraction, see http://www.maths.usyd.edu.au/u/MOW/vectors/vectors-3/v-3-7.html
// vSourceToDestination = vDestination - vSource;
// First, we draw a vector from the center point of the radial to the point where we started dragging
var from = dragStartPoint - (Vector2)radialLayout.transform.position;
// Next, we draw a vector from the center point of the radial to the point we are currently dragging on
var to = eventData.position - (Vector2)radialLayout.transform.position;
// Now, we calculate the angle between these two:
var dragAngle = Vector2.SignedAngle(from, to);
// Lerping makes movement fast at the beginning slow at the end
var lerpedAngle = Mathf.Round(Mathf.LerpAngle(radialLayout.StartAngle, dragAngle, 0.5f));
radialLayout.StartAngle = lerpedAngle;
}
I don't know all of your code and types but I would have an idea. I can't test this right now and can not garant that it even works like this but I hope the idea gets clear.
I would probably rather use something like
// This is the vector from the center of the object to the mouse/touch position
// (in screen pixel space)
var touchDirection = eventData.position - Camera.main.WorldToScreenPoint(transform.position);
// angle between the Up (Y) axis and this touchDirection
// for the angle the length of the up vector doesn't matter so there is
// no need to convert it to pixel space
var targetAngle = Vector2.SignedAngle(Vector2.up, touchDirection);
// since the returned angle might be negative wrap it to get values 0-360
if(targetAngle < 0) targetAngle += 360;
// Now either simply use Lerp
// this would simply interpolate each frame to the middle of both values
// the result is a fast movement at the beginning and a very slow at the end
radialLayout.StartAngle = Mathf.Lerp(radialLayout.StartAngle, targetAngle, 0.5f);
// or maybe use a fixed speed like 30°/second
var difference = targetAngle - radialLayout.StartAngle;
radialLayout.StartAngle += Mathf.Sign(difference) * Mathf.Min(30f * Time.deltaTime, Mathf.Abs(difference));
Typed on smartphone but I hope the idea gets clear
Good day,
I'd like to program a constantly moving ball (object3) being passed between two stationary objects (object1, object2), with the ability to set the max height Y of the pass trajectory dynamically.
What would you argue is the best way to program the ball physics for this concept?
I've looked at using addForce on a default sphere w/ a rigidbody. It seems like there should be an equation that expresses the trajectory of a pass of object3 from object1's x to object2's x... at a known, given speed, with a known, set mass, and a known gravity environment.
However, currently I have a Vector3.Lerp interpolating the ball between the two objects on each FixedUpdate() with t expressed as:
`(Mathf.Sin(speed * Time.time) + 1.0f) / 2.0f;`
It works and all, but with this approach, it seems there's no clear way to add height to the trajectory of the ball path. I've considered adding the height to the Y value in object2 until the ball is half way there, and then setting it back to the original Y position... but it just feels wrong! Thoughts?
Thanks!
Okey so if I understand you correctly currently you are doing
privte void FixedUpdate()
{
var factor = (Mathf.Sin(speed * Time.time) + 1.0f) / 2.0f;
object1.MovePosition(Vector3.Lerp(object2.position, object3.position, factor));
}
which moves the ball pingpong between object1 and object2 position but only planar.
Assuming for now the objects will only be moving within the XZ plane and never have different Y position in order to rather get a curve with height you could treat the separatly:
- Interpolate between both positions as before
- Separately calculate the Y position with sinus or any other mathematical curve function - for realistic physics probably rather a parabola actually
Could look somhow like
public class Example : MonoBehaviour
{
public Rigidbody object1;
public Transform object2;
public Transform object3;
// adjust in the Inspector
public float speed = 1;
public float Amplitude = 0;
// Just for debug
[Range(0, 1)] [SerializeField] private float linearFactor;
[SerializeField] private float yPosition;
private void FixedUpdate()
{
// This always returns a value between 0 and 1
// and linearly pingpongs forth and back
linearFactor = Mathf.PingPong(Time.time * speed, 1);
// * Mathf.PI => gives now a value 0 - PI
// so sinus returns correctly 0 - 1 (no need for +1 and /2 anymore)
// then simply multiply by the desired amplitude
var sinus = Mathf.Sin(linearFactor * Mathf.PI);
yPosition = sinus * Amplitude;
// As before interpolate between the positions
// later we will ignore/replace the Y component
var position = Vector3.Lerp(object2.position, object3.position, linearFactor);
object1.MovePosition(new Vector3(position.x, yPosition, position.z));
}
}
You could optionally also try and add some dumping in the Y direction in order to make the vertical movement more realistic (slow down when reaching the peak). I tried a bit using inverted SmoothStep like
// just for debug
[Range(0, 1)] [SerializeField] private float dampedSinusFactor;
[Range(0, 1)] [SerializeField] private float linearFactor;
[SerializeField] private float yPosition;
private void FixedUpdate()
{
// Use two different factros:
// - a linear one for movement in XZ
// - a smoothed one for movement in Y (in order to slow down when reaching the peak ;) )
linearFactor = Mathf.PingPong(Time.time * speed, 1);
dampedSinusFactor = InvertSmoothStep(linearFactor);
// * Mathf.PI => gives now a value 0 - PI
// so sinus returns correctly 0 - 1 ()
// then simply multiply by the desired amplitude
var sinus = Mathf.Sin(dampedSinusFactor * Mathf.PI);
yPosition = sinus * Amplitude;
// later we will ignore/replace the Y component
var position = Vector3.Lerp(object2.position, object3.position, linearFactor);
object1.position = new Vector3(position.x, yPosition, position.z);
}
// source: https://stackoverflow.com/a/34576808/7111561
private float InvertSmoothStep(float x)
{
return x + (x - (x * x * (3.0f - 2.0f * x)));
}
However for slow movements this looks a bit strange yet. But you can come up with any other maths curve that results in the expected behavior for x=[0,1] ;)
Suppose I have an object A at position x = 0 and object B at position x = 16.
Suppose A have this code:
public class Move : MonoBehaviour
{
float speed = 0.04f;
Update()
{
transform.Translate(speed, 0, 0);
}
}
My question is: how to evaluate how many seconds (precisely) will it take for A to collide with B?
If I apply the formula S = S0 + vt, it won't work correctly, because I don't know how to measure how many frames it will pass in a second to exactly measure what speed is.
First of all you shouldn't do that. Your code is currently framerate-dependent so the object moves faster if you have a higher framerate!
Rather use Time.deltaTime
This property provides the time between the current and previous frame.
to convert your speed from Unity Units / frame into Unity Units / second
transform.Translate(speed * Time.deltaTime, 0, 0);
this means the object now moves with 0.04 Unity Units / second (framerate-independent).
Then I would say the required time in seconds is simply
var distance = Mathf.Abs(transform.position.x - objectB.transform.position.x);
var timeInSeconds = distance / speed;
Though .. this obviously still assumes by "collide" you mean at the same position (at least on the X axis) .. you could also take their widths into account since their surfaces will collide earlier than this ;)
var distance = Mathf.Abs(transform.position.x - objectB.transform.position.x) - (objectAWidth + objectBWidth);
var timeInSeconds = distance / speed;
I am trying to create mid-air movement for a 3D platformer, and I am trying to use transform.forward and transform.right as floats. However, I can't seem to figure out how to change them into float values, since they are Vector3 variables. Here is what I have tried:
velX = transform.forward * Input.GetAxis("Horizontal");
velZ = transform.right * Input.GetAxis("Vertical");
What I got was an error saying the transform.forward and transform.right are Vector3 values, wheras velX and velZ are floats.
Not entirely sure what you're trying to achieve but if you're looking for a scalar representation of a vector, that is the actual vector length, then Vector3.magnitude will get it. It'll return the distance between the given vector origin and its endpoint.
You get the vector magnitude by calling:
Vector3.magnitude(point.forward)
And I'm almost certain you can even do:
point.forward.magnitude
You can go here and here for further reference.
Again, I'm not sure if that's what you're trying to get but I hope it helps.
Figured it out:
velX = (transform.forward.x + transform.right.x) * Input.GetAxis("Horizontal");
velZ = (transform.forward.z + transform.right.z) * Input.GetAxis("Vertical");
I a new here and i try to start working with Unity Engine.
Could somebody explain me, how works Quaternion.Slerp? Because I want to rotate some object in different angles 90, 180 and 270. My code you can see below. Unfortunately when I add 180 degrees, object make crazy things and than put rotation to (0, 180, 180) for this game object. I would like to get (180,0,0)
public float speed = 0.1F;
private float rotation_x;
void Update()
{
if (Input.GetButtonDown("Fire1"))
{
rotation_x = transform.rotation.eulerAngles.x;
rotation_x += 180;
}
transform.rotation = Quaternion.Slerp(transform.rotation, Quaternion.Euler(rotation_x, transform.eulerAngles.y, transform.eulerAngles.z), Time.time * speed);
}
Most examples out there including Unity examples from their official website are using Lerp in the wrong way. They didn't even bother to describe how it works in the API documentation. They just starch it in the Update() function and call it a day.
Mathf.Lerp, Vector3.Lerp, and Quaternion.Slerp work by changing from one position/rotation to another with the t value(last parameter) being passed in.That t value is also know as time.
The min of the t value is 0f and the max is 1f.
I will explain this with Mathf.Lerp to make it easier to understand. The Lerp functions are all the-same for both Mathf.Lerp, Vector and Quaternion.
Remember that Lerp takes two values and returns values between them. If we have a value of 1 and 10 and we do Lerp on them:
float x = Mathf.Lerp(1f, 10f, 0f); will return 1.
float x = Mathf.Lerp(1f, 10f, 0.5f); will return 5.5
float x = Mathf.Lerp(1f, 10f, 1f); will return 10
As you can see, the t(0) returns the min of the number passed in, t(1) returns the max value passed in and t(0.5) will return mid point between the min and the max value. You are doing it wrong when you pass any t value that is < 0 or > 1. That code in you Update() function is doing just that. Time.time will increase every second and will be > 1 in a second, so you have problems with that.
It recommended to use Lerp in another function/Coroutine instead of the Updated function.
Note:
Using Lerp has a bad side of it when it comes to rotation. Lerp does not know how to rotate Object with the shortest path. So bear that in mind. For example, you have an Object with 0,0,90 position. Lets say you want to move the rotation from that to 0,0,120 Lerp can sometimes rotate left instead of right to reach that new position which means it take longer to reach that distance.
Let's say we want to make the rotation (0,0,90) from whatever the current rotation is. The code below will change the rotation to 0,0,90 in 3 seconds.
ROTATION OVER TIME:
void Start()
{
Quaternion rotation2 = Quaternion.Euler(new Vector3(0, 0, 90));
StartCoroutine(rotateObject(objectToRotate, rotation2, 3f));
}
bool rotating = false;
public GameObject objectToRotate;
IEnumerator rotateObject(GameObject gameObjectToMove, Quaternion newRot, float duration)
{
if (rotating)
{
yield break;
}
rotating = true;
Quaternion currentRot = gameObjectToMove.transform.rotation;
float counter = 0;
while (counter < duration)
{
counter += Time.deltaTime;
gameObjectToMove.transform.rotation = Quaternion.Lerp(currentRot, newRot, counter / duration);
yield return null;
}
rotating = false;
}
INCREMENTAL ANGULAR ROTATION OVER TIME:
And to just rotate the Object to 90 in z axis, the code below is a great example of that. Please understand there is a difference between moving Object to new rotational point and just rotating it.
void Start()
{
StartCoroutine(rotateObject(objectToRotate, new Vector3(0, 0, 90), 3f));
}
bool rotating = false;
public GameObject objectToRotate;
IEnumerator rotateObject(GameObject gameObjectToMove, Vector3 eulerAngles, float duration)
{
if (rotating)
{
yield break;
}
rotating = true;
Vector3 newRot = gameObjectToMove.transform.eulerAngles + eulerAngles;
Vector3 currentRot = gameObjectToMove.transform.eulerAngles;
float counter = 0;
while (counter < duration)
{
counter += Time.deltaTime;
gameObjectToMove.transform.eulerAngles = Vector3.Lerp(currentRot, newRot, counter / duration);
yield return null;
}
rotating = false;
}
All my examples are based on frame-rate of the device. You can use real-time by replacing Time.deltaTime with Time.delta but more calculation is required.
Before anything, you can't add 180 on euler angles like that, and that's mainly what is causing your problem. You'd better use quaternion directly instead, or work on the transform itself.
You can think of a quaternion as an orientation in space. In contrary to what have been said, I do recommend learning how to use them if you can. However, I don't recommend using euler angles at all... as they're suject to different writing conventions, and will fail sometimes. You can look at 'gimbal lock' if you want details about that.
Simply a slerp or lerp (standing for spherical linear interpolation, or linear interpolation respectively) is a way to interpolate (go from one orientation to another, by increasing t from 0 to 1, in a coroutine or anywhere else) between orientation A and B. The difference between the two is that the slerp is giving you the shortest path from A to B.
In the end, when t = 1, lerp(A,B,t) and slerp(A,B,t) will give you B.
In your case, if you want to instantly rotate an object in space to a specific orientation, I suggest you use Quaternion.AngleAxis which is the most forward way to describe mathematically a quaternion.
If you want to add a rotation, say 90° to you actual orientation (without animation between the two), you can do something like this :
transform.rotation *= Quaternion.AngleAxis(axis_of_rotation, angle)
or use transform.rotate (depending on the parameters, it can be a right multiply, or left : local, or world transform).
Programmers' answer is detailling how to animate your transform. But I do suggest you to investigate quaternion themselves, as it will give you global understanding of space transforms.