maybe someone can help me. I have the following table in mongodb and I need to perform the following calculation:
Odds:
High
Average
Low
For each probability, a multiplier must be applied
Example:
High probability: Value * 0.87
Average probability: Value * 0.5
Low Probability: Value * 0.06
I made the following query in the db mongo, but I can apply only one multiplier. I was unable to differentiate each probability to multiply by the above values.
db.teste.aggregate(
{
$match: {
$and: [
{
"converted_fields.Probabilidade de fechamento": {
$ne: null
},
"current.value": {
$ne: 0
},
"current.add_time": {
$gte: ISODate("2020-07-01")
},
}
]
}
},
{
$project: {
"_id": "$_id",
"___group": {
"probabilidade": "$converted_fields.Probabilidade de fechamento"
},
"current___value": "$current.value"
}
},
{
$group: {
"_id": "$___group",
"count": {
$sum: "$current___value"
}
}
},
{
$project: {
"_id": 0,
"probabilidade": "$_id.probabilidade",
"valor": {
$multiply: ["$count", 0.5]
}
}
}
)
Result:
{
Alta - 379,5
Média - 1647,9
Baixa - 3763,32
}
how do I separate a different multiplier for each probability?
The aggregation might look something like this:
db.teste.aggregate([
{
$match: {
$and: [
{
"converted_fields.Probabilidade de fechamento": {
$ne: null
},
"current.value": {
$ne: 0
},
"current.add_time": {
$gte: ISODate("2020-07-01")
},
}
]
}
},
{
$group: {
_id: "$converted_fields.Probabilidade de fechamento",
count: { $sum: "$current.value"}
}
},
{
$project:
{
_id: 1,
valor:
{
$switch:
{
branches: [
{
case: { $eq: [ "$_id", "Alta"] },
then: { $multiply: ["$count", 0.87] }
},
{
case: { $eq: [ "$_id", "Médica"] },
then: { $multiply: ["$count", 0.5] }
},
{
case: { $eq: [ "$_id", "Baixa"] },
then: { $multiply: ["$count", 0.06] }
}
],
default: 0
}
}
}
},
{
$group: {
_id: null,
probabilidades: {
$push: {
k: "$_id",
v: "$valor"
}
}
}
},
{
$replaceRoot: {
newRoot: {
$arrayToObject: "$probabilidades"
}
}
}
])
The first $match stage is still as you had it. In my solution the first $group stage will return documents of this form:
{
_id: 'Alta',
count: 100
}
In the following $project stage, I use the $switch operator in order to determine what to multiply count by in order to get the correct valor. Using the sample document I showed before, this stage will return documents that look like this:
{
_id: 'Alta',
valor: 87
}
Next is another $group stage, where I group all of the probability documents together, and push them into an array. The document from this stage might look like this:
{
_id: null,
probabilidades: [
{ 'k': 'Alta', 'v': 87 },
{ 'k': 'Baixa', 'v': 6 }
]
}
In the final stage, $replaceRoot, I use $arrayToObject to turn the probabilidades array into your desired output.
Related
the code without the round function is:
db.sales.aggregate([{$group: {
_id: '$item',
averageAmount: { $avg: { $multiply: ['$quantity', '$price'] } },},},
{ $sort: { averageAmount: 1 } },
])
I think you may be missing round stage, please see example on the link
https://mongoplayground.net/p/hY3qZiH4FPc
Basically I just added addFields stage where the field is rounded
db.sales.aggregate([
{
$group: {
_id: "$item",
averageAmount: {
$avg: {
$multiply: [
"$quantity",
"$price"
]
}
},
},
},
{
$addFields: {
averageAmount: {
$round: [
"$averageAmount",
2
]
}
}
},
{
$sort: {
averageAmount: 1
}
}
])
Updated:
I have a document on the database that looks like this:
My question is the following:
How can I retrieve the first 10 elements from the friendsArray from database and sort it descending or ascending based on the lastTimestamp value.
I don't want to download all values to my API and then sort them in Python because that is wasting my resources.
I have tried it using this code (Python):
listOfUsers = db.user_relations.find_one({'userId': '123'}, {'friendsArray' : {'$orderBy': {'lastTimestamp': 1}}}).limit(10)
but it just gives me this error pymongo.errors.OperationFailure: Unknown expression $orderBy
Any answer at this point would be really helpful! Thank You!
use aggregate
first unwind
then sort according timestap
group by _id to create sorted array
use addfields and filter for getting first 10 item of array
db.collection.aggregate([
{ $match:{userId:"123"}},
{
"$unwind": "$friendsArray"
},
{
$sort: {
"friendsArray.lastTimeStamp": 1
}
},
{
$group: {
_id: "$_id",
friendsArray: {
$push: "$friendsArray"
}
},
},
{
$addFields: {
friendsArray: {
$filter: {
input: "$friendsArray",
as: "z",
cond: {
$lt: [
{
$indexOfArray: [
"$friendsArray",
"$$z"
]
},
10
]
}// 10 is n first item
}
}
},
}
])
https://mongoplayground.net/p/2Usk5sRY2L2
and for pagination use this
db.collection.aggregate([
{ $match:{userId:"123"}},
{
"$unwind": "$friendsArray"
},
{
$sort: {
"friendsArray.lastTimeStamp": 1
}
},
{
$group: {
_id: "$_id",
friendsArray: {
$push: "$friendsArray"
}
},
},
{
$addFields: {
friendsArray: {
$filter: {
input: "$friendsArray",
as: "z",
cond: {
$and: [
{
$gt: [
{
$indexOfArray: [
"$friendsArray",
"$$z"
]
},
10
]
},
{
$lt: [
{
$indexOfArray: [
"$friendsArray",
"$$z"
]
},
20
]
},
]
}// 10 is n first item
}
}
},
}
])
The translation of your find to aggregation(we need unwind that why aggregation is used) would be like the bellow query.
Test code here
Query (for descending replace 1 with -1)
db.collection.aggregate([
{
"$match": {
"userId": "123"
}
},
{
"$unwind": {
"path": "$friendsArray"
}
},
{
"$sort": {
"friendsArray.lastTimeStamp": 1
}
},
{
"$limit": 10
},
{
"$replaceRoot": {
"newRoot": "$friendsArray"
}
}
])
If you want to skip some before limit add one stage also
{
"$skip" : 10
}
To take the 10-20 messages for example.
I want to find prev/next blog documents whose publish date is closest to the input document.
Below is the document structure.
Collection Examples (blog)
{
blogCode: "B0001",
publishDate: "2020-09-21"
},
{
blogCode: "B0002",
publishDate: "2020-09-22"
},
{
blogCode: "B0003",
publishDate: "2020-09-13"
},
{
blogCode: "B0004",
publishDate: "2020-09-24"
},
{
blogCode: "B0005",
publishDate: "2020-09-05"
}
If the input is blogCode = B0003
Expected output
{
blogCode: "B0005",
publishDate: "2020-09-05"
},
{
blogCode: "B0001",
publishDate: "2020-09-21"
}
How could I get the output result? In sql, it seems using ROW_NUMBER can solve my problem, however I can't find a solution to achieve the feature in MongoDB. The alternate solution may be reference to this answer (But, it seems inefficient). Maybe using mapReduce is another better solutions? I'm confused at the moment, please give me some help.
You can go like following.
We need to compare existing date with given date. So I used $facet to categorize both dates
The original data should be one Eg : B0003. So that I just get the first element of the origin[] array to compare with rest[] array
used $unwind to flat the rest[]
Substract to get the different between both dates
Again used $facet to find previous and next dates.
Then combined both to get your expected result
NOTE : The final array may have 0<elements<=2. The expected result given by you will not find out whether its a prev or next date if there is a one element. So my suggestion is add another field to say which date it is as the mongo playground shows
[{
$facet: {
origin: [{
$match: { blogCode: 'B0001' }
}],
rest: [{
$match: {
$expr: {
$ne: ['$blogCode','B0001']
}
}
}]
}
}, {
$project: {
origin: {
$arrayElemAt: ['$origin',0]
},
rest: 1
}
}, {
$unwind: {path: '$rest'}
}, {
$project: {
diff: {
$subtract: [{ $toDate: '$rest.publishDate' },{ $toDate: '$origin.publishDate'}]
},
rest: 1,
origin: 1
}
}, {
$facet: {
prev: [{
$sort: {diff: -1}
},
{
$match: {
diff: {$lt: 0 }
}
},
{
$limit: 1
},
{
$addFields:{"rest.type":"PREV"}
}
],
next: [{
$sort: { diff: 1 }
},
{
$match: {
diff: { $gt: 0 }
}
},
{
$limit: 1
},
{
$addFields:{"rest.type":"NEXT"}
}
]
}
}, {
$project: {
combined: {
$concatArrays: ["$prev", "$next"]
}
}
}, {
$unwind: {
path: "$combined"
}
}, {
$replaceRoot: {
newRoot: "$combined.rest"
}
}]
Working Mongo playground
Inspire for the solution of varman proposed. I also find another way to solve my problem by using includeArrayIndex.
[
{
$sort: {
"publishDate": 1
},
},
{
$group: {
_id: 1,
root: {
$push: "$$ROOT"
}
},
},
{
$unwind: {
path: "$root",
includeArrayIndex: "rownum"
}
},
{
$replaceRoot: {
newRoot: {
$mergeObjects: [
"$root",
{
rownum: "$rownum"
}
]
}
}
},
{
$facet: {
currRow: [
{
$match: {
blogCode: "B0004"
},
},
{
$project: {
rownum: 1
}
}
],
root: [
{
$match: {
blogCode: {
$exists: true
}
}
},
]
}
},
{
$project: {
currRow: {
$arrayElemAt: [
"$currRow",
0
]
},
root: 1
}
},
{
$project: {
rownum: {
prev: {
$add: [
"$currRow.rownum",
-1
]
},
next: {
$add: [
"$currRow.rownum",
1
]
}
},
root: 1
}
},
{
$unwind: "$root"
},
{
$facet: {
prev: [
{
$match: {
$expr: {
$eq: [
"$root.rownum",
"$rownum.prev"
]
}
}
},
{
$replaceRoot: {
newRoot: "$root"
}
}
],
next: [
{
$match: {
$expr: {
$eq: [
"$root.rownum",
"$rownum.next"
]
}
}
},
{
$replaceRoot: {
newRoot: "$root"
}
}
],
}
},
{
$project: {
prev: {
$arrayElemAt: [
"$prev",
0
]
},
next: {
$arrayElemAt: [
"$next",
0
]
},
}
},
]
Working Mongo playground
I have the following stage in my MongoDB aggregation pipeline that returns the qty and sum of sales, which works fine:
{
$lookup: {
from: 'sales',
let: { part: '$_id' },
pipeline: [
{ $match: { $and: [{ $expr: { $eq: ['$partner', '$$part'] } }] } },
{ $group: { _id: null, qty: { $sum: 1 }, soldFor: { $sum: '$soldFor' } } },
{ $project: { _id: 0, qty: 1, soldFor: 1 } }],
as: 'sales'}},
{ $unwind: { path: '$sales', preserveNullAndEmptyArrays: true } },
{ $project: { _id: 1, sales: 1 }
}
However, if there are no sales, then the $project projection returns an empty sales object, but what I'd really like is it to return a completed object, but with 0 - like this:
{
sales: {
qty: 0,
soldFor: 0
}
}
You can use $cond operator here
{
"$project": {
"_id": 1,
"sales": {
"$cond": [
{ "$eq": [{ "$size": "$sales" }, 0] },
{
"sales": {
"qty": 0,
"soldFor": 0
}
},
"$sales"
]
}
}
}
i did this Aggregate pipeline , and i want add a field contains the Global Total of all groups total.
{ "$match": query },
{ "$sort": cursor.sort },
{ "$group": {
_id: { key:"$paymentFromId"},
items: {
$push: {
_id:"$_id",
value:"$value",
transaction:"$transaction",
paymentMethod:"$paymentMethod",
createdAt:"$createdAt",
...
}
},
count:{$sum:1},
total:{$sum:"$value"}
}}
{
//i want to get
...project groups , goupsTotal , groupsCount
}
,{
"$skip":cursor.skip
},{
"$limit":cursor.limit
},
])
you need to use $facet (avaialble from MongoDB 3.4) to apply multiple pipelines on the same set of docs
first pipeline: skip and limit docs
second pipeline: calculate total of all groups
{ "$match": query },
{ "$sort": cursor.sort },
{ "$group": {
_id: { key:"$paymentFromId"},
items: {
$push: "$$CURRENT"
},
count:{$sum:1},
total:{$sum:"$value"}
}
},
{
$facet: {
docs: [
{ $skip:cursor.skip },
{ $limit:cursor.limit }
],
overall: [
{$group: {
_id: null,
groupsTotal: {$sum: '$total'},
groupsCount:{ $sum: '$count'}
}
}
]
}
the final output will be
{
docs: [ .... ], // array of {_id, items, count, total}
overall: { } // object with properties groupsTotal, groupsCount
}
PS: I've replaced the items in the third pipe stage with $$CURRENT which adds the whole document for the sake of simplicity, if you need custom properties then specify them.
i did it in this way , project the $group result in new field doc and $sum the sub totals.
{
$project: {
"doc": {
"_id": "$_id",
"total": "$total",
"items":"$items",
"count":"$count"
}
}
},{
$group: {
"_id": null,
"globalTotal": {
$sum: "$doc.total"
},
"result": {
$push: "$doc"
}
}
},
{
$project: {
"result": 1,
//paging "result": {$slice: [ "$result", cursor.skip,cursor.limit ] },
"_id": 0,
"globalTotal": 1
}
}
the output
[
{
globalTotal: 121500,
result: [ [group1], [group2], [group3], ... ]
}
]