Consider this dart code:
T t = T() // id field defaults to null
List<T> list = List()..add(t);
t.id = '123';
print('${list.first.id}') // What's output?
My question is about whether passed items to List are copied over to List or it's a reference.
I've encountered this ambiguity because I'm using flutter_redux where an action contains an instance of class T. on reducer, I add this T instance to my state. later on, in the middleware, I update this t's id. But surprisingly id field on the state(in this case List) changes too! So my only guess is that objects are passed by reference. Is this assumption correct?
Everything in Dart is an Object, so anything you are passing is passed by reference.
From the Dart Language Tour:
Everything you can place in a variable is an object, and every object
is an instance of a class. Even numbers, functions, and null are
objects. All objects inherit from the Object class.
mutable/immutable objects
There is a difference however between mutable and immutable objects. Some objects are immutable, and therefore cannot be modified, while mutable objects can be modified.
An example of immutable objects is String objects.
An example of mutable object is List just like you observed in your example.
constness
Dart has another interesting type of object, and if you are familiar with C++ or C, you would have encountered these. These are compile-time constants (const), and carry with them an attribute of immutability. Any object can be declared as const at the point of creation, provided the constructor being called has been declared as const.
Watch out with const objects if you are passing them to functions that expect mutable objects because attempting to mutate the constant, will result in a runtime error.
void modl(final List<int> l) {
l.add(90);
print(l);
}
void main() {
List<int> l = const [1,2,3,4];
modl(l); // Uncaught Error
print (l);
}
Running the above program will result in an Uncaught Error because l is a compile-time constant.
See Detecting when a const object is passed to a function that mutates it, in Dart
Related
Why does this code:
class _SequentialTextPageState {
String jsonTextPref = 'seqtext';
int jsonTextSuff = 10;
String jsonText = jsonTextPref + jsonTextSuff.toString();
}
generate these errors?
Error: The instance member 'jsonTextPref' can't be accessed in an initializer.
Error: The instance member 'jsonTextSuff' can't be accessed in an initializer.
It seems to me that concatenation between String and int is correct?
Dart initializes objects in multiple phases. Initializing members directly ("field initializers") occurs early in object initialization, before this becomes valid, so that phase cannot initialize members that depend on other parts of the object.
Dart provides multiple ways to initialize members, so if one member needs to depend on another, you can initialize it in a later phase by using a different mechanism. For example, you could do one of:
Add the late keyword to make the dependent member lazily initialized.
Move initialization of the dependent member into the constructor body.
In the case of a Flutter State subtype, you could initialize the dependent member in its initState method, which in some cases is more appropriate.
Note that in some cases you additionally can consider replacing the member variable with a read-only getter instead. For example, in your case, perhaps you could use:
String get jsonText => jsonTextPref + jsonTextSuff.toString();
That would be appropriate if jsonText should always depend on jsonTextPref and jsonTextSuff, would never need to have an independent value, and if it's acceptable for jsonText to return a new object every time it's accessed.
Dart does not allow field initializers to refer to the object itself. Fields must always be fully initialized before any access is given to the object begin created.
The initializers can only access static and top-level variables, not any instance variables on the object itself.
With null safety, you will be allowed to write late String jsonText = this.something + this.other;. That field will then not be initialized until it's first read or written, which is necessarily after the object itself has been created.
You can only use constant expressions as initializers. x=this.y is not constant.
The error was displayed when I did following:
class MyClass {
String id;
String[] imagePaths;
}
It will mark the String in the line String id; as error, but the error is in the next line, it should be List<String> imagePaths; instead of String[] imagePaths; then the error in the line above also disappears. This can be very confusing if you have a big class and the actual error is many lines underneath the first marked line (talking from experience...)
Why does this code:
class _SequentialTextPageState {
String jsonTextPref = 'seqtext';
int jsonTextSuff = 10;
String jsonText = jsonTextPref + jsonTextSuff.toString();
}
generate these errors?
Error: The instance member 'jsonTextPref' can't be accessed in an initializer.
Error: The instance member 'jsonTextSuff' can't be accessed in an initializer.
It seems to me that concatenation between String and int is correct?
Dart initializes objects in multiple phases. Initializing members directly ("field initializers") occurs early in object initialization, before this becomes valid, so that phase cannot initialize members that depend on other parts of the object.
Dart provides multiple ways to initialize members, so if one member needs to depend on another, you can initialize it in a later phase by using a different mechanism. For example, you could do one of:
Add the late keyword to make the dependent member lazily initialized.
Move initialization of the dependent member into the constructor body.
In the case of a Flutter State subtype, you could initialize the dependent member in its initState method, which in some cases is more appropriate.
Note that in some cases you additionally can consider replacing the member variable with a read-only getter instead. For example, in your case, perhaps you could use:
String get jsonText => jsonTextPref + jsonTextSuff.toString();
That would be appropriate if jsonText should always depend on jsonTextPref and jsonTextSuff, would never need to have an independent value, and if it's acceptable for jsonText to return a new object every time it's accessed.
Dart does not allow field initializers to refer to the object itself. Fields must always be fully initialized before any access is given to the object begin created.
The initializers can only access static and top-level variables, not any instance variables on the object itself.
With null safety, you will be allowed to write late String jsonText = this.something + this.other;. That field will then not be initialized until it's first read or written, which is necessarily after the object itself has been created.
You can only use constant expressions as initializers. x=this.y is not constant.
The error was displayed when I did following:
class MyClass {
String id;
String[] imagePaths;
}
It will mark the String in the line String id; as error, but the error is in the next line, it should be List<String> imagePaths; instead of String[] imagePaths; then the error in the line above also disappears. This can be very confusing if you have a big class and the actual error is many lines underneath the first marked line (talking from experience...)
Why does this code:
class _SequentialTextPageState {
String jsonTextPref = 'seqtext';
int jsonTextSuff = 10;
String jsonText = jsonTextPref + jsonTextSuff.toString();
}
generate these errors?
Error: The instance member 'jsonTextPref' can't be accessed in an initializer.
Error: The instance member 'jsonTextSuff' can't be accessed in an initializer.
It seems to me that concatenation between String and int is correct?
Dart initializes objects in multiple phases. Initializing members directly ("field initializers") occurs early in object initialization, before this becomes valid, so that phase cannot initialize members that depend on other parts of the object.
Dart provides multiple ways to initialize members, so if one member needs to depend on another, you can initialize it in a later phase by using a different mechanism. For example, you could do one of:
Add the late keyword to make the dependent member lazily initialized.
Move initialization of the dependent member into the constructor body.
In the case of a Flutter State subtype, you could initialize the dependent member in its initState method, which in some cases is more appropriate.
Note that in some cases you additionally can consider replacing the member variable with a read-only getter instead. For example, in your case, perhaps you could use:
String get jsonText => jsonTextPref + jsonTextSuff.toString();
That would be appropriate if jsonText should always depend on jsonTextPref and jsonTextSuff, would never need to have an independent value, and if it's acceptable for jsonText to return a new object every time it's accessed.
Dart does not allow field initializers to refer to the object itself. Fields must always be fully initialized before any access is given to the object begin created.
The initializers can only access static and top-level variables, not any instance variables on the object itself.
With null safety, you will be allowed to write late String jsonText = this.something + this.other;. That field will then not be initialized until it's first read or written, which is necessarily after the object itself has been created.
You can only use constant expressions as initializers. x=this.y is not constant.
The error was displayed when I did following:
class MyClass {
String id;
String[] imagePaths;
}
It will mark the String in the line String id; as error, but the error is in the next line, it should be List<String> imagePaths; instead of String[] imagePaths; then the error in the line above also disappears. This can be very confusing if you have a big class and the actual error is many lines underneath the first marked line (talking from experience...)
Why does this code:
class _SequentialTextPageState {
String jsonTextPref = 'seqtext';
int jsonTextSuff = 10;
String jsonText = jsonTextPref + jsonTextSuff.toString();
}
generate these errors?
Error: The instance member 'jsonTextPref' can't be accessed in an initializer.
Error: The instance member 'jsonTextSuff' can't be accessed in an initializer.
It seems to me that concatenation between String and int is correct?
Dart initializes objects in multiple phases. Initializing members directly ("field initializers") occurs early in object initialization, before this becomes valid, so that phase cannot initialize members that depend on other parts of the object.
Dart provides multiple ways to initialize members, so if one member needs to depend on another, you can initialize it in a later phase by using a different mechanism. For example, you could do one of:
Add the late keyword to make the dependent member lazily initialized.
Move initialization of the dependent member into the constructor body.
In the case of a Flutter State subtype, you could initialize the dependent member in its initState method, which in some cases is more appropriate.
Note that in some cases you additionally can consider replacing the member variable with a read-only getter instead. For example, in your case, perhaps you could use:
String get jsonText => jsonTextPref + jsonTextSuff.toString();
That would be appropriate if jsonText should always depend on jsonTextPref and jsonTextSuff, would never need to have an independent value, and if it's acceptable for jsonText to return a new object every time it's accessed.
Dart does not allow field initializers to refer to the object itself. Fields must always be fully initialized before any access is given to the object begin created.
The initializers can only access static and top-level variables, not any instance variables on the object itself.
With null safety, you will be allowed to write late String jsonText = this.something + this.other;. That field will then not be initialized until it's first read or written, which is necessarily after the object itself has been created.
You can only use constant expressions as initializers. x=this.y is not constant.
The error was displayed when I did following:
class MyClass {
String id;
String[] imagePaths;
}
It will mark the String in the line String id; as error, but the error is in the next line, it should be List<String> imagePaths; instead of String[] imagePaths; then the error in the line above also disappears. This can be very confusing if you have a big class and the actual error is many lines underneath the first marked line (talking from experience...)
I am looking for examples of Chapel passing by reference. This example works but it seems like bad form since I am "returning" the input. Does this waste memory? Is there an explicit way to operate on a class?
class PowerPuffGirl {
var secretIngredients: [1..0] string;
}
var bubbles = new PowerPuffGirl();
bubbles.secretIngredients.push_back("sugar");
bubbles.secretIngredients.push_back("spice");
bubbles.secretIngredients.push_back("everything nice");
writeln(bubbles.secretIngredients);
proc kickAss(b: PowerPuffGirl) {
b.secretIngredients.push_back("Chemical X");
return b;
}
bubbles = kickAss(bubbles);
writeln(bubbles.secretIngredients);
And it produces the output
sugar spice everything nice
sugar spice everything nice Chemical X
What is the most efficient way to use a function to modify Bubbles?
Whether Chapel passes an argument by reference or not can be controlled by the argument intent. For example, integers normally pass by value but we can pass one by reference:
proc increment(ref x:int) { // 'ref' here is an argument intent
x += 1;
}
var x:int = 5;
increment(x);
writeln(x); // outputs 6
The way that a type passes when you don't specify an argument is known as the default intent. Chapel passes records, domains, and arrays by reference by default; but of these only arrays are modifiable inside the function. ( Records and domains pass by const ref - meaning they are passed by reference but that the function they are passed to cannot modify them. Arrays pass by ref or const ref depending upon what the function does with them - see array default intent ).
Now, to your question specifically, class instances pass by "value" by default, but Chapel considers the "value" of a class instance to be a pointer. That means that instead of allowing a field (say) to be mutated, passing a class instance by ref just means that it could be replaced with a different class instance. There isn't currently a way to say that a class instance's fields should not be modifiable in the function (other than making them to be explicitly immutable data types).
Given all of that, I don't see any inefficiencies with the code sample you provided in the question. In particular, here:
proc kickAss(b: PowerPuffGirl) {
b.secretIngredients.push_back("Chemical X");
return b;
}
the argument accepting b will receive a copy of the pointer to the instance and the return b will return a copy of that pointer. The contents of the instance (in particular the secretIngredients array) will remain stored where it was and won't be copied in the process.
One more thing:
This example works but it seems like bad form since I am "returning" the input.
As I said, this isn't really a problem for class instances or integers. What about an array?
proc identity(A) {
return A;
}
var A:[1..100] int;
writeln(identity(A));
In this example, the return A in identity() actually does cause a copy of the array to be made. That copy wasn't created when passing the array in to identity(), since the array was passed by with a const ref intent. But, since the function returns something "by value" that was a reference, it's necessary to copy it as part of returning. See also arrays return by value by default in the language evolution document.
In any case, if one wants to return an array by reference, it's possible to do so with the ref or const ref return intent, e.g.:
proc refIdentity(ref arg) ref {
return arg;
}
var B:[1..10] int;
writeln(refIdentity(B));
Now there is no copy of the array and everything is just referring to the same B.
Note though that it's currently possible to write programs that return a reference to a variable that no longer exists. The compiler includes some checking in that area but it's not complete. Hopefully improvements in that area are coming soon.