Skip first line of a csv file in scala - scala

I want to read and write a csv file ignoring the first line as the header starts from second line.
val df =df1.withColumn("index", monotonicallyIncreasingId()).filter(col("index") > 1).drop("index")
This does not resolves my issue.

Left anti join maybe?
header = df.limit(1)
df.join(header, df.columns, 'left_anti').show()
or use rdd filter.
header = df.first()
df.rdd.filter(lambda x: x != header).toDF(df.columns).show()

Let me show you my try.
If header is present in second line of csv file and we need to ignore first line.
val df=spark.read.text("/yourFilePath/my.csv").withColumn("row_id",monotonically_increasing_id)
val cols=df.select("value").filter('row_id===1).first.mkString.split(",")
val df2 = df.filter('row_id>1).
withColumn("temp", split(col("value"), ",")).
select((0 until cols.length).map(i => col("temp").getItem(i).as(cols.apply(i))): _*)
Before
+------------+------+
| value|row_id|
+------------+------+
| aasadasd| 0|
|name,age,des| 1|
| a,2,dd| 2|
| b,5,ff| 3|
+------------+------+
After
+----+---+---+
|name|age|des|
+----+---+---+
|a |2 |dd |
|b |5 |ff |
+----+---+---+

Related

Scala/Spark; Add column to DataFrame that increments by 1 when a value is repeated in another column

I have a dataframe called rawEDI that looks something like this;
Line_number
Segment
1
ST
2
BPT
3
SE
4
ST
5
BPT
6
N1
7
SE
8
ST
9
PTD
10
SE
Each row represents a line in a file. Each line is called a segment and is denoted by something called a segment identifier; a short string. Segments are grouped together in chunks that start with an ST segment identifier and end with an SE segment segment identifier. There can be any number of ST chunks in a given file and the size of each any ST chunk is not fixed.
I want to create a new column on the dataframe that represents numerically what ST group a given segment belongs to. This will allow me to use groupBy to perform aggregate operations across all ST segments without having to loop over each individual ST segment, which is too slow.
The final DataFrame would look like this;
Line_number
Segment
ST_Group
1
ST
1
2
BPT
1
3
SE
1
4
ST
2
5
BPT
2
6
N1
2
7
SE
2
8
ST
3
9
PTD
3
10
SE
3
In short, I want to create and populate a DataFrame column with a number that increments by one whenever the value "ST" appears in the Segment column.
I am using spark 2.3.2 and scala 2.11.8
My initial thought was to use iteration. I collected another DataFrame, df, that contained the starting and ending line_number for each segment, looking like this;
Start
End
1
3
4
7
8
10
Then iterate over the rows of the dataframe and use them to populate the new column like this;
var st = 1
for (row <- df.collect()) {
val start = row(0)
val end = row(1)
var labelSTs = rawEDI.filter("line_number > = ${start}").filter("line_number <= ${end}").withColumn("ST_Group", lit(st))
st = st + 1
However, this yields an empty DataFrame. Additionally, the use of a for loop is time-prohibitive, taking over 20s on my machine for this. Achieving this result without the use of a loop would be huge, but a solution with a loop may also be acceptable if performant.
I have a hunch this can be accomplished using a udf or a Window, but I'm not certain how to attack that.
This
val func = udf((s:String) => if(s == "ST") 1 else 0)
var labelSTs = rawEDI.withColumn("ST_Group", func((col("segment")))
Only populates the column with 1 at each ST segment start.
And this
val w = Window.partitionBy("Segment").orderBy("line_number")
val labelSTs = rawEDI.withColumn("ST_Group", row_number().over(w)
Returns a nonsense dataframe.
One way is to create an intermediate dataframe of "groups" that would tell you on which line each group starts and ends (sort of what you've already done), and then join it to the original table using greater-than/less-than conditions.
Sample data
scala> val input = Seq((1,"ST"),(2,"BPT"),(3,"SE"),(4,"ST"),(5,"BPT"),
(6,"N1"),(7,"SE"),(8,"ST"),(9,"PTD"),(10,"SE"))
.toDF("linenumber","segment")
scala> input.show(false)
+----------+-------+
|linenumber|segment|
+----------+-------+
|1 |ST |
|2 |BPT |
|3 |SE |
|4 |ST |
|5 |BPT |
|6 |N1 |
|7 |SE |
|8 |ST |
|9 |PTD |
|10 |SE |
+----------+-------+
Create a dataframe for groups, using Window just as your hunch was telling you:
scala> val groups = input.where("segment='ST'")
.withColumn("endline",lead("linenumber",1) over Window.orderBy("linenumber"))
.withColumn("groupnumber",row_number() over Window.orderBy("linenumber"))
.withColumnRenamed("linenumber","startline")
.drop("segment")
scala> groups.show(false)
+---------+-----------+-------+
|startline|groupnumber|endline|
+---------+-----------+-------+
|1 |1 |4 |
|4 |2 |8 |
|8 |3 |null |
+---------+-----------+-------+
Join both to get the result
scala> input.join(groups,
input("linenumber") >= groups("startline") &&
(input("linenumber") < groups("endline") || groups("endline").isNull))
.select("linenumber","segment","groupnumber")
.show(false)
+----------+-------+-----------+
|linenumber|segment|groupnumber|
+----------+-------+-----------+
|1 |ST |1 |
|2 |BPT |1 |
|3 |SE |1 |
|4 |ST |2 |
|5 |BPT |2 |
|6 |N1 |2 |
|7 |SE |2 |
|8 |ST |3 |
|9 |PTD |3 |
|10 |SE |3 |
+----------+-------+-----------+
The only problem with this is Window.orderBy() on an unpartitioned dataframe, which would collect all data to a single partition and thus could be a killer.
if you want just to add column with a number that increments by one whenever the value "ST" appears in the Segment column, you can filter lines with the ST segment in a separate dataframe,
var labelSTs = rawEDI.filter("segement == 'ST'");
// then group by ST and collect to list the linenumbers
var groupedDf = labelSTs.groupBy("Segment").agg(collect_list("Line_number").alias("Line_numbers"))
// now you need to flat back the data frame and log the line number index
var flattedDf = groupedDf.select($"Segment", explode($"Line_numbers").as("Line_number"))
// log the line_number index in your target column ST_Group
val withIndexDF = flattenedDF.withColumn("ST_Group", row_number().over(Window.partitionBy($"Segment").orderBy($"Line_number")))
and you have this as result:
+-------+----------+----------------+
|Segment|Line_number|ST_Group |
+-------+----------+----------------+
| ST| 1| 1|
| ST| 4| 2|
| ST| 8| 3|
+-------|----------|----------------|
then you concat this with other Segement in the initial dataframe.
Found a more simpler way, add a column which will have 1 when the segment column value is ST, otherwise it will have 0. Then using Window function find the cummulative sum of that new column. This will give you the desired results.
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val rawEDI=Seq((1,"ST"),(2,"BPT"),(3,"SE"),(4,"ST"),(5,"BPT"),(6,"N1"),(7,"SE"),(8,"ST"),(9,"PTD"),(10,"SE")).toDF("line_number","segment")
val newDf=rawEDI.withColumn("ST_Group", ($"segment" === "ST").cast("bigint"))
val windowSpec = Window.orderBy("line_number")
newDf.withColumn("ST_Group", sum("ST_Group").over(windowSpec))
.show
+-----------+-------+--------+
|line_number|segment|ST_Group|
+-----------+-------+--------+
| 1| ST| 1|
| 2| BPT| 1|
| 3| SE| 1|
| 4| ST| 2|
| 5| BPT| 2|
| 6| N1| 2|
| 7| SE| 2|
| 8| ST| 3|
| 9| PTD| 3|
| 10| SE| 3|
+-----------+-------+--------+

Spark Scala split column values in a dataframe to appended lists

I have data in a spark dataframe that I need to search for elements by name, append the values to a list, and split searched elements into separate columns of the dataframe.
I am using scala and the below is an example of my current code that works to get the first value but I need to append all values available not just the first.
I'm new to Scala (and python) so any help will be greatly appreciated!
val getNumber: (String => String) = (colString: String) => {
if (colString != null) {
raw"number:(\d+)".r
.findAllIn(colString)
.group(1)
}
else
null
}
val udfGetColumn = udf(getNumber)
val mydf = df.select(cols.....)
.withColumn("var_number", udfGetColumn($"var"))
Example Data:
+------+----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| key| var |
+------+----------------------------------------------------------------------------------------------------------------------------------------------------------------+
|1 |["[number:123456 rate:111970 position:1]","[number:123457 rate:662352 position:2]","[number:123458 rate:890 position:3]","[number:123459 rate:190 position:4]"] | |
|2 |["[number:654321 rate:211971 position:1]","[number:654322 rate:124 position:2]","[number:654323 rate:421 position:3]"] |
+------+----------------------------------------------------------------------------------------------------------------------------------------------------------------+
Desired Result:
+------+------------------------------------------------------------+
| key| var_number | var_rate | var_position |
+------+------------------------------------------------------------+
|1 | 123456 | 111970 | 1 |
|1 | 123457 | 662352 | 2 |
|1 | 123458 | 890 | 3 |
|1 | 123459 | 190 | 4 |
|2 | 654321 | 211971 | 1 |
|2 | 654322 | 124 | 2 |
|2 | 654323 | 421 | 3 |
+------+-----------------+---------------------+--------------------+
You don't need to use UDF here. You can easily transform the array column var by converting each element into a map using str_to_map after removing the square brackets ([]) with regexp_replace function. Finally, explode the transformed array and select the fields:
val df = Seq(
(1, Seq("[number:123456 rate:111970 position:1]", "[number:123457 rate:662352 position:2]", "[number:123458 rate:890 position:3]", "[number:123459 rate:190 position:4]")),
(2, Seq("[number:654321 rate:211971 position:1]", "[number:654322 rate:124 position:2]", "[number:654323 rate:421 position:3]"))
).toDF("key", "var")
val result = df.withColumn(
"var",
explode(expr(raw"transform(var, x -> str_to_map(regexp_replace(x, '[\\[\\]]', ''), ' '))"))
).select(
col("key"),
col("var").getField("number").alias("var_number"),
col("var").getField("rate").alias("var_rate"),
col("var").getField("position").alias("var_position")
)
result.show
//+---+----------+--------+------------+
//|key|var_number|var_rate|var_position|
//+---+----------+--------+------------+
//| 1| 123456| 111970| 1|
//| 1| 123457| 662352| 2|
//| 1| 123458| 890| 3|
//| 1| 123459| 190| 4|
//| 2| 654321| 211971| 1|
//| 2| 654322| 124| 2|
//| 2| 654323| 421| 3|
//+---+----------+--------+------------+
From you comment, it appears the column var is of type string not array. In this case, you can first transform it by removing [] and " characters then split by comma to get an array:
val df = Seq(
(1, """["[number:123456 rate:111970 position:1]", "[number:123457 rate:662352 position:2]", "[number:123458 rate:890 position:3]", "[number:123459 rate:190 position:4]"]"""),
(2, """["[number:654321 rate:211971 position:1]", "[number:654322 rate:124 position:2]", "[number:654323 rate:421 position:3]"]""")
).toDF("key", "var")
val result = df.withColumn(
"var",
split(regexp_replace(col("var"), "[\\[\\]\"]", ""), ",")
).withColumn(
"var",
explode(expr("transform(var, x -> str_to_map(x, ' '))"))
).select(
// select your columns as above...
)

Convert every value of a dataframe

I need to modify the values of every column of a dataframe so that, they all are enclosed within double quotes after mapping but the dataframe still retains its original structure with the headers.
I tried mapping the values by changing the rows to sequences but it loses its headers in the output dataframe.
With this read in as input dataframe:
|prodid|name |city|
+------+-------+----+
|1 |Harshit|VNS |
|2 |Mohit |BLR |
|2 |Mohit |RAO |
|2 |Mohit |BTR |
|3 |Rohit |BOM |
|4 |Shobhit|KLK |
I tried the following code.
val columns = df.columns
df.map{ row =>
row.toSeq.map{col => "\""+col+"\"" }
}.toDF(columns:_*)
But it throws an error stating there's only 1 header i.e value in the mapped dataframe.
This is the actual result (if I remove ".df(columns:_*)"):
| value|
+--------------------+
|["1", "Harshit", ...|
|["2", "Mohit", "B...|
|["2", "Mohit", "R...|
|["2", "Mohit", "B...|
|["3", "Rohit", "B...|
|["4", "Shobhit", ...|
+--------------------+
And my expected result is something like:
|prodid|name |city |
+------+---------+------+
|"1" |"Harshit"|"VNS" |
|"2" |"Mohit" |"BLR" |
|"2" |"Mohit" |"RAO" |
|"2" |"Mohit" |"BTR" |
|"3" |"Rohit" |"BOM" |
|"4" |"Shobhit"|"KLK" |
Note: There are only 3 headers in this example but my original data has a lot of headers so manually typing each and every one of them is not an option in case the file header changes. How do I get this modified value dataframe from that?
Edit: If I need the quotes on all values except the Integers. So, the output is something like:
|prodid|name |city |
+------+---------+------+
|1 |"Harshit"|"VNS" |
|2 |"Mohit" |"BLR" |
|2 |"Mohit" |"RAO" |
|2 |"Mohit" |"BTR" |
|3 |"Rohit" |"BOM" |
|4 |"Shobhit"|"KLK" |
Might be easier to use select instead:
val df = Seq((1, "Harshit", "VNS"), (2, "Mohit", "BLR"))
.toDF("prodid", "name", "city")
df.select(df.schema.fields.map {
case StructField(name, IntegerType, _, _) => col(name)
case StructField(name, _, _, _) => format_string("\"%s\"", col(name)) as name
}:_*).show()
Output:
+------+---------+-----+
|prodid| name| city|
+------+---------+-----+
| 1|"Harshit"|"VNS"|
| 2| "Mohit"|"BLR"|
+------+---------+-----+
Note that there are other numeric types as well such as LongType and DoubleType so might need to handle these as well or alternatively just quote StringType etc.

Appending a new column to existing dataframe Spark scala [duplicate]

I am using Apache Spark 2.0 Dataframe/Dataset API
I want to add a new column to my dataframe from List of values. My list has same number of values like given dataframe.
val list = List(4,5,10,7,2)
val df = List("a","b","c","d","e").toDF("row1")
I would like to do something like:
val appendedDF = df.withColumn("row2",somefunc(list))
df.show()
// +----+------+
// |row1 |row2 |
// +----+------+
// |a |4 |
// |b |5 |
// |c |10 |
// |d |7 |
// |e |2 |
// +----+------+
For any ideas I would be greatful, my dataframe in reality contains more columns.
You could do it like this:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
// create rdd from the list
val rdd = sc.parallelize(List(4,5,10,7,2))
// rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at <console>:28
// zip the data frame with rdd
val rdd_new = df.rdd.zip(rdd).map(r => Row.fromSeq(r._1.toSeq ++ Seq(r._2)))
// rdd_new: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[33] at map at <console>:32
// create a new data frame from the rdd_new with modified schema
spark.createDataFrame(rdd_new, df.schema.add("new_col", IntegerType)).show
+----+-------+
|row1|new_col|
+----+-------+
| a| 4|
| b| 5|
| c| 10|
| d| 7|
| e| 2|
+----+-------+
Adding for completeness: the fact that the input list (which exists in driver memory) has the same size as the DataFrame suggests that this is a small DataFrame to begin with - so you might consider collect()-ing it, zipping with list, and converting back into a DataFrame if needed:
df.collect()
.map(_.getAs[String]("row1"))
.zip(list).toList
.toDF("row1", "row2")
That won't be faster, but if the data is really small it might be negligible and the code is (arguably) clearer.

Pass Array[seq[String]] to UDF in spark scala

I am new to UDF in spark. I have also read the answer here
Problem statement: I'm trying to find pattern matching from a dataframe col.
Ex: Dataframe
val df = Seq((1, Some("z")), (2, Some("abs,abc,dfg")),
(3,Some("a,b,c,d,e,f,abs,abc,dfg"))).toDF("id", "text")
df.show()
+---+--------------------+
| id| text|
+---+--------------------+
| 1| z|
| 2| abs,abc,dfg|
| 3|a,b,c,d,e,f,abs,a...|
+---+--------------------+
df.filter($"text".contains("abs,abc,dfg")).count()
//returns 2 as abs exits in 2nd row and 3rd row
Now I want to do this pattern matching for every row in column $text and add new column called count.
Result:
+---+--------------------+-----+
| id| text|count|
+---+--------------------+-----+
| 1| z| 1|
| 2| abs,abc,dfg| 2|
| 3|a,b,c,d,e,f,abs,a...| 1|
+---+--------------------+-----+
I tried to define a udf passing $text column as Array[Seq[String]. But I am not able to get what I intended.
What I tried so far:
val txt = df.select("text").collect.map(_.toSeq.map(_.toString)) //convert column to Array[Seq[String]
val valsum = udf((txt:Array[Seq[String],pattern:String)=> {txt.count(_ == pattern) } )
df.withColumn("newCol", valsum( lit(txt) ,df(text)) )).show()
Any help would be appreciated
You will have to know all the elements of text column which can be done using collect_list by grouping all the rows of your dataframe as one. Then just check if element in text column in the collected array and count them as in the following code.
import sqlContext.implicits._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions._
val df = Seq((1, Some("z")), (2, Some("abs,abc,dfg")),(3,Some("a,b,c,d,e,f,abs,abc,dfg"))).toDF("id", "text")
val valsum = udf((txt: String, array : mutable.WrappedArray[String])=> array.filter(element => element.contains(txt)).size)
df.withColumn("grouping", lit("g"))
.withColumn("array", collect_list("text").over(Window.partitionBy("grouping")))
.withColumn("count", valsum($"text", $"array"))
.drop("grouping", "array")
.show(false)
You should have following output
+---+-----------------------+-----+
|id |text |count|
+---+-----------------------+-----+
|1 |z |1 |
|2 |abs,abc,dfg |2 |
|3 |a,b,c,d,e,f,abs,abc,dfg|1 |
+---+-----------------------+-----+
I hope this is helpful.