How to perform the following operation in spark,
Initially:
+-----------+-----+------+
|date |col1 | col2 |
+-----------+-----+------+
|2020-08-16 | 2 | abc |
|2020-08-17 | 3 | def |
|2020-08-18 | 4 | ghi |
|2020-08-19 | 5 | jkl |
|2020-08-20 | 6 | mno |
+-----------+-----+------+
Final result:
+-----------+-----+------+
|date |col1 | col2 |
+-----------+-----+------+
|2020-08-16 | 2 | abc |
|2020-08-15 | 2 | abc |
|2020-08-17 | 3 | def |
|2020-08-16 | 3 | def |
|2020-08-18 | 4 | ghi |
|2020-08-17 | 4 | ghi |
|2020-08-19 | 5 | jkl |
|2020-08-18 | 5 | jkl |
|2020-08-20 | 6 | mno |
|2020-08-19 | 6 | mno |
+-----------+-----+------+
So in essence need to duplicate each row with a change in one of the column values i.e. for each row, duplicate with date column as minus 1 day of current value.
Try with date_add function then create array with date column and date-1 column and finally explode the column.
Example:
df.show()
/*
+----------+----+----+
| date|col1|col2|
+----------+----+----+
|2020-08-16| 2| abc|
|2020-08-17| 3| def|
+----------+----+----+
*/
import org.apache.spark.sql.functions._
df.withColumn("new_date",array(col("date"),date_add(col("date"),-1))).
drop("date").
selectExpr("explode(new_date) as date","*").
drop("new_date").
show(10,false)
/*
+----------+----+----+
|date |col1|col2|
+----------+----+----+
|2020-08-16|2 |abc |
|2020-08-15|2 |abc |
|2020-08-17|3 |def |
|2020-08-16|3 |def |
+----------+----+----+
*/
I was thinking union would be quite elegant for this solution, eg
// Union the two dataframes together, take 1 day away from the date
df.union(df.select(date_add($"date", -1), $"col1", $"col2"))
Full sample script where I create the test data:
import org.apache.spark.sql.functions._
val dfOriginal = Seq(("2020-08-16", 2, "abc"), ("2020-08-17", 3, "def"), ("2020-08-18", 4, "ghi"), ("2020-08-19", 5, "jkl"), ("2020-08-20", 6, "mno"))
.toDF("date", "col1", "col2")
val df = dfOriginal
.select (to_date($"date", "yyyy-MM-dd").as("date"), $"col1", $"col2")
// Union the two dataframes together, take 1 day away from the date
df.union(df.select(date_add($"date", -1), $"col1", $"col2"))
.orderBy("date", "col1", "col2")
.show
My results:
Maybe a bit late for this but answering this on python so others might find it useful.
from pyspark.sql.functions import *
Initial DF looks like this:
+-----------+-----+------+
|date |col1 | col2 |
+-----------+-----+------+
|2020-08-16 | 2 | abc |
|2020-08-17 | 3 | def |
|2020-08-18 | 4 | ghi |
|2020-08-19 | 5 | jkl |
|2020-08-20 | 6 | mno |
+-----------+-----+------+
df.withColumn("dates_array",array(col("date"),date_add(col("date"),-1))))
.drop("date")
.withColumn("date",explode("dates_array"))
.drop("dates_array")
.show()
Then you'll get what you want:
+-----------+-----+------+
|date |col1 | col2 |
+-----------+-----+------+
|2020-08-16 | 2 | abc |
|2020-08-15 | 2 | abc |
|2020-08-17 | 3 | def |
|2020-08-16 | 3 | def |
|2020-08-18 | 4 | ghi |
|2020-08-17 | 4 | ghi |
|2020-08-19 | 5 | jkl |
|2020-08-18 | 5 | jkl |
|2020-08-20 | 6 | mno |
|2020-08-19 | 6 | mno |
+-----------+-----+------+
Related
i need help to implement below Python logic into Pyspark dataframe.
Python:
df1['isRT'] = df1['main_string'].str.lower().str.contains('|'.join(df2['sub_string'].str.lower()))
df1.show()
+--------+---------------------------+
|id | main_string |
+--------+---------------------------+
| 1 | i am a boy |
| 2 | i am from london |
| 3 | big data hadoop |
| 4 | always be happy |
| 5 | software and hardware |
+--------+---------------------------+
df2.show()
+--------+---------------------------+
|id | sub_string |
+--------+---------------------------+
| 1 | happy |
| 2 | xxxx |
| 3 | i am a boy |
| 4 | yyyy |
| 5 | from london |
+--------+---------------------------+
Final Output:
df1.show()
+--------+---------------------------+--------+
|id | main_string | isRT |
+--------+---------------------------+--------+
| 1 | i am a boy | True |
| 2 | i am from london | True |
| 3 | big data hadoop | False |
| 4 | always be happy | True |
| 5 | software and hardware | False |
+--------+---------------------------+--------+
First construct the substring list substr_list, and then use the rlike function to generate the isRT column.
df3 = df2.select(F.expr('collect_list(lower(sub_string))').alias('substr'))
substr_list = '|'.join(df3.first()[0])
df = df1.withColumn('isRT', F.expr(f'lower(main_string) rlike "{substr_list}"'))
df.show(truncate=False)
For your two dataframes,
df1 = spark.createDataFrame(['i am a boy', 'i am from london', 'big data hadoop', 'always be happy', 'software and hardware'], 'string').toDF('main_string')
df1.show(truncate=False)
df2 = spark.createDataFrame(['happy', 'xxxx', 'i am a boy', 'yyyy', 'from london'], 'string').toDF('sub_string')
df2.show(truncate=False)
+---------------------+
|main_string |
+---------------------+
|i am a boy |
|i am from london |
|big data hadoop |
|always be happy |
|software and hardware|
+---------------------+
+-----------+
|sub_string |
+-----------+
|happy |
|xxxx |
|i am a boy |
|yyyy |
|from london|
+-----------+
you can get the following result with the simple join expression.
from pyspark.sql import functions as f
df1.join(df2, f.col('main_string').contains(f.col('sub_string')), 'left') \
.withColumn('isRT', f.expr('if(sub_string is null, False, True)')) \
.drop('sub_string') \
.show()
+--------------------+-----+
| main_string| isRT|
+--------------------+-----+
| i am a boy| true|
| i am from london| true|
| big data hadoop|false|
| always be happy| true|
|software and hard...|false|
+--------------------+-----+
I have a dataframe with different columns, what I am trying to do is the mean of this diff columns ignoring null values. For example:
+--------+-------+---------+-------+
| Baller | Power | Vision | KXD |
+--------+-------+---------+-------+
| John | 5 | null | 10 |
| Bilbo | 5 | 3 | 2 |
+--------+-------+---------+-------+
The output have to be:
+--------+-------+---------+-------+-----------+
| Baller | Power | Vision | KXD | MEAN |
+--------+-------+---------+-------+-----------+
| John | 5 | null | 10 | 7.5 |
| Bilbo | 5 | 3 | 2 | 3,33 |
+--------+-------+---------+-------+-----------+
What I am doing:
val a_cols = Array(col("Power"), col("Vision"), col("KXD"))
val avgFunc = a_cols.foldLeft(lit(0)){(x, y) => x+y}/a_cols.length
val avg_calc = df.withColumn("MEAN", avgFunc)
But I get the null values:
+--------+-------+---------+-------+-----------+
| Baller | Power | Vision | KXD | MEAN |
+--------+-------+---------+-------+-----------+
| John | 5 | null | 10 | null |
| Bilbo | 5 | 3 | 2 | 3,33 |
+--------+-------+---------+-------+-----------+
You can explode the columns and do a group by + mean, then join back to the original dataframe using the Baller column:
val result = df.join(
df.select(
col("Baller"),
explode(array(col("Power"), col("Vision"), col("KXD")))
).groupBy("Baller").agg(mean("col").as("MEAN")),
Seq("Baller")
)
result.show
+------+-----+------+---+------------------+
|Baller|Power|Vision|KXD| MEAN|
+------+-----+------+---+------------------+
| John| 5| null| 10| 7.5|
| Bilbo| 5| 3| 2|3.3333333333333335|
+------+-----+------+---+------------------+
I have the following PySpark DataFrame where each column represents a time series and I'd like to study their distance to the mean.
+----+----+-----+---------+
| T1 | T2 | ... | Average |
+----+----+-----+---------+
| 1 | 2 | ... | 2 |
| -1 | 5 | ... | 4 |
+----+----+-----+---------+
This is what I'm hoping to get:
+----+----+-----+---------+
| T1 | T2 | ... | Average |
+----+----+-----+---------+
| -1 | 0 | ... | 2 |
| -5 | 1 | ... | 4 |
+----+----+-----+---------+
Up until now, I've tried naively running a UDF on individual columns but it takes respectively 30s-50s-80s... (keeps increasing) per column so I'm probably doing something wrong.
cols = ["T1", "T2", ...]
for c in cols:
df = df.withColumn(c, df[c] - df["Average"])
Is there a better way to do this transformation of adding one column to many other?
By using rdd, it can be done in this way.
+---+---+-------+
|T1 |T2 |Average|
+---+---+-------+
|1 |2 |2 |
|-1 |5 |4 |
+---+---+-------+
df.rdd.map(lambda r: (*[r[i] - r[-1] for i in range(0, len(r) - 1)], r[-1])) \
.toDF(df.columns).show()
+---+---+-------+
| T1| T2|Average|
+---+---+-------+
| -1| 0| 2|
| -5| 1| 4|
+---+---+-------+
How can I check for the dates from the adjacent rows (preceding and next) in a Dataframe. This should happen at a key level
I have following data after sorting on key, dates
source_Df.show()
+-----+--------+------------+------------+
| key | code | begin_dt | end_dt |
+-----+--------+------------+------------+
| 10 | ABC | 2018-01-01 | 2018-01-08 |
| 10 | BAC | 2018-01-03 | 2018-01-15 |
| 10 | CAS | 2018-01-03 | 2018-01-21 |
| 20 | AAA | 2017-11-12 | 2018-01-03 |
| 20 | DAS | 2018-01-01 | 2018-01-12 |
| 20 | EDS | 2018-02-01 | 2018-02-16 |
+-----+--------+------------+------------+
When the dates are in a range from these rows (i.e. the current row begin_dt falls in between begin and end dates of the previous row), I need to have the lowest begin date on all such rows and the highest end date.
Here is the output I need..
final_Df.show()
+-----+--------+------------+------------+
| key | code | begin_dt | end_dt |
+-----+--------+------------+------------+
| 10 | ABC | 2018-01-01 | 2018-01-21 |
| 10 | BAC | 2018-01-01 | 2018-01-21 |
| 10 | CAS | 2018-01-01 | 2018-01-21 |
| 20 | AAA | 2017-11-12 | 2018-01-12 |
| 20 | DAS | 2017-11-12 | 2018-01-12 |
| 20 | EDS | 2018-02-01 | 2018-02-16 |
+-----+--------+------------+------------+
Appreciate any ideas to achieve this. Thanks in advance!
Here's one approach:
Create new column group_id with null value if begin_dt is within date range from the previous row; otherwise a unique integer
Backfill nulls in group_id with the last non-null value
Compute min(begin_dt) and max(end_dt) within each (key, group_id) partition
Example below:
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val df = Seq(
(10, "ABC", "2018-01-01", "2018-01-08"),
(10, "BAC", "2018-01-03", "2018-01-15"),
(10, "CAS", "2018-01-03", "2018-01-21"),
(20, "AAA", "2017-11-12", "2018-01-03"),
(20, "DAS", "2018-01-01", "2018-01-12"),
(20, "EDS", "2018-02-01", "2018-02-16")
).toDF("key", "code", "begin_dt", "end_dt")
val win1 = Window.partitionBy($"key").orderBy($"begin_dt", $"end_dt")
val win2 = Window.partitionBy($"key", $"group_id")
df.
withColumn("group_id", when(
$"begin_dt".between(lag($"begin_dt", 1).over(win1), lag($"end_dt", 1).over(win1)), null
).otherwise(monotonically_increasing_id)
).
withColumn("group_id", last($"group_id", ignoreNulls=true).
over(win1.rowsBetween(Window.unboundedPreceding, 0))
).
withColumn("begin_dt2", min($"begin_dt").over(win2)).
withColumn("end_dt2", max($"end_dt").over(win2)).
orderBy("key", "begin_dt", "end_dt").
show
// +---+----+----------+----------+-------------+----------+----------+
// |key|code| begin_dt| end_dt| group_id| begin_dt2| end_dt2|
// +---+----+----------+----------+-------------+----------+----------+
// | 10| ABC|2018-01-01|2018-01-08|1047972020224|2018-01-01|2018-01-21|
// | 10| BAC|2018-01-03|2018-01-15|1047972020224|2018-01-01|2018-01-21|
// | 10| CAS|2018-01-03|2018-01-21|1047972020224|2018-01-01|2018-01-21|
// | 20| AAA|2017-11-12|2018-01-03| 455266533376|2017-11-12|2018-01-12|
// | 20| DAS|2018-01-01|2018-01-12| 455266533376|2017-11-12|2018-01-12|
// | 20| EDS|2018-02-01|2018-02-16| 455266533377|2018-02-01|2018-02-16|
// +---+----+----------+----------+-------------+----------+----------+
When I perform a Select operation on a DataFrame in PySpark it reduces to the following:
+-----+--------+-------+
| val | Feat1 | Feat2 |
+-----+--------+-------+
| 1 | f1a | f2a |
| 2 | f1a | f2b |
| 8 | f1b | f2f |
| 9 | f1a | f2d |
| 4 | f1b | f2c |
| 6 | f1b | f2a |
| 1 | f1c | f2c |
| 3 | f1c | f2g |
| 9 | f1c | f2e |
+-----+--------+-------+
I require the val column to be ordered group wise based on another field Feat1 like the following:
+-----+--------+-------+
| val | Feat1 | Feat2 |
+-----+--------+-------+
| 1 | f1a | f2a |
| 2 | f1a | f2b |
| 3 | f1a | f2d |
| 1 | f1b | f2c |
| 2 | f1b | f2a |
| 3 | f1b | f2f |
| 1 | f1c | f2c |
| 2 | f1c | f2g |
| 3 | f1c | f2e |
+-----+--------+-------+
NOTE that the val values don't depend on the order of Feat2 but are instead ordered based on their original val values.
Is there a command to reorder the column value in PySpark as required.
NOTE: Question exists for the same but is specific to SQL-lite.
data = [(1, 'f1a', 'f2a'),
(2, 'f1a', 'f2b'),
(8, 'f1b', 'f2f'),
(9, 'f1a', 'f2d'),
(4, 'f1b', 'f2c'),
(6, 'f1b', 'f2a'),
(1, 'f1c', 'f2c'),
(3, 'f1c', 'f2g'),
(9, 'f1c', 'f2e')]
table = sqlContext.createDataFrame(data, ['val', 'Feat1', 'Feat2'])
Edit: For this purpose, you can use window with rank function:
from pyspark.sql import Window
from pyspark.sql.functions import rank
w = Window.partitionBy('Feat1').orderBy('val')
table.withColumn('val', rank().over(w)).orderBy('Feat1').show()
+---+-----+-----+
|val|Feat1|Feat2|
+---+-----+-----+
| 1| f1a| f2a|
| 2| f1a| f2b|
| 3| f1a| f2d|
| 1| f1b| f2c|
| 2| f1b| f2a|
| 3| f1b| f2f|
| 1| f1c| f2c|
| 2| f1c| f2g|
| 3| f1c| f2e|
+---+-----+-----+