Euclidian distances in speaker recognition system - matlab

I'm new in Matlab and now I have a problem for the implementation of a simple speaker recognition system using PNCC and MFFC.
My problem is on matrix dimension in fact, when I run my program, it give me this error:
Matrix dimensions must agree.
Error in disteu (line 43)
d(n,:) = sum((x(:, n+copies) - y) .^2, 1);
Error in test (line 22)
d = disteu(v, code{l});
Error in main (line 4)
test('C:\Users\Antonio\Documents\MATLAB\test',5, code);
Just for the sake of clarity I have attached my code.
Could anyone help me please?
function d = disteu(x, y)
% DISTEU Pairwise Euclidean distances between columns of two matrices
%
% Input:
% x, y: Two matrices whose each column is an a vector data.
%
% Output:
% d: Element d(i,j) will be the Euclidean distance between two
% column vectors X(:,i) and Y(:,j)
%
% Note:
% The Euclidean distance D between two vectors X and Y is:
% D = sum((x-y).^2).^0.5
% D = sum((x-y).^2).^0.5
[M, N] = size(x);
[M2, P] = size(y);
if (M ~= M2)
y=padarray(y,0,0,'post');
x=padarray(x,21,0,'post');
[M, N] = size(x)
[M2, P] = size(y)
y=padarray(y,0,0,'post');
[M2, P] = size(y)
end
%error('Matrix dimensions do not match.')
d = zeros(N, P);
if (N < P)
copies = zeros(1,P);
for n = 1:N
d(n,:) = sum((x(:, n+copies) - y) .^2, 1);
end
else
copies = zeros(1,N);
for p = 1:P
d(:,p) = sum((x - y(:, p+copies)) .^2, 1)';
end
end
d = d.^0.5;
function [aadDCT] = PNCC(rawdata, fsamp)
ad_x = rawdata;
%addpath voicebox/; % With Spectral Subtraction - default parameters
%ad_x = specsub(rawdata, fsamp);
dLamda_L = 0.999;
dLamda_S = 0.999;
dSampRate = fsamp;
dLowFreq = 200;% Changed to 40 from 200 as low freq is 40 in gabor as well
dHighFreq = dSampRate / 2;
dPowerCoeff = 1 / 15;
iFiltType = 1;
dFactor = 2.0;
dGammaThreshold = 0.005;
iM = 0; % Changed from 2 to 0 as number of frames coming out to be different due to queue
iN = 4;
iSMType = 0;
dLamda = 0.999;
dLamda2 = 0.5;
dDelta1 = 1;
dLamda3 = 0.85;
dDelta2 = 0.2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Flags
%
bPreem = 1; % pre-emphasis flag
bSSF = 1;
bPowerLaw = 1;
bDisplay = 0;
dFrameLen = 0.025; % 25.6 ms window length, which is the default setting in CMU Sphinx
dFramePeriod = 0.010; % 10 ms frame period
iPowerFactor = 1;
global iNumFilts;
iNumFilts = 40;
if iNumFilts<30
iFFTSize = 512;
else
iFFTSize = 1024;
end
% For derivatives
deltawindow = 2; % to calculate 1st derivative
accwindow = 2; % to calculate 2nd derivative
% numcoeffs = 13; % number of cepstral coefficients to be used
numcoeffs = 13;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Flags
%
%
% Array Queue Ring-buffer
%
global Queue_aad_P;
global Queue_iHead;
global Queue_iTail;
global Queue_iWindow;
global Queue_iNumElem;
Queue_iWindow = 2 * iM + 1;
Queue_aad_P = zeros(Queue_iWindow, iNumFilts);
Queue_iHead = 0;
Queue_iTail = 0;
Queue_iNumElem = 0;
iFL = floor(dFrameLen * dSampRate);
iFP = floor(dFramePeriod * dSampRate);
iNumFrames = floor((length(ad_x) - iFL) / iFP) + 1;
iSpeechLen = length(ad_x);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Pre-emphasis using H(z) = 1 - 0.97 z ^ -1
%
if (bPreem == 1)
ad_x = filter([1 -0.97], 1, double(ad_x));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Obtaning the gammatone coefficient.
%
% Based on M. Snelly's auditory toolbox.
% In actual C-implementation, we just use a table
%
bGamma = 1;
[wts,binfrqs] = fft2melmx(iFFTSize, dSampRate, iNumFilts, 1, dLowFreq, dHighFreq, iFiltType);
wts = wts';
wts(size(wts, 1) / 2 + 1 : size(wts, 1), : ) = [];
aad_H = wts;
i_FI = 0;
i_FI_Out = 0;
if bSSF == 1
adSumPower = zeros(1, iNumFrames - 2 * iM);
else
adSumPower = zeros(1, iNumFrames);
end
%dLamda_L = 0.998;
aad_P = zeros(iNumFrames, iNumFilts);
aad_P_Out = zeros(iNumFrames - 2 * iM, iNumFilts);
ad_Q = zeros(1, iNumFilts);
ad_Q_Out = zeros(1, iNumFilts);
ad_QMVAvg = zeros(1, iNumFilts);
ad_w = zeros(1, iNumFilts);
ad_w_sm = zeros(1, iNumFilts);
ad_QMVAvg_LA = zeros(1, iNumFilts);
MEAN_POWER = 1e10;
dMean = 5.8471e+08;
dPeak = 2.7873e+09 / 15.6250;
% (1.7839e8, 2.0517e8, 2.4120e8, 2.9715e8, 3.9795e8) 95, 96, 97, 98, 99
% percentile from WSJ-si84
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dPeakVal = 4e+07;% % 4.0638e+07 --> Mean from WSJ0-si84 (Important!!!)
%%%%%%%%%%%
dMean = dPeakVal;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Obtaining the short-time Power P(i, j)
%
for m = 0 : iFP : iSpeechLen - iFL
ad_x_st = ad_x(m + 1 : m + iFL) .* hamming(iFL);
adSpec = fft(ad_x_st, iFFTSize);
ad_X = abs(adSpec(1: iFFTSize / 2));
aadX(:, i_FI + 1) = ad_X;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Calculating the Power P(i, j)
%
for j = 1 : iNumFilts
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Squared integration
%
if iFiltType == 2
aad_P(i_FI + 1, j) = sum((ad_X .* aad_H(:, j)) .^ 2);
else
aad_P(i_FI + 1, j) = sum((ad_X .^ 2 .* aad_H(:, j)));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Calculating the Power P(i, j)
%
dSumPower = sum(aad_P(i_FI + 1, : ));
if bSSF == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Ring buffer (using a Queue)
%
if (i_FI >= 2 * iM + 1)
Queue_poll();
end
Queue_offer(aad_P(i_FI + 1, :));
ad_Q = Queue_avg();
if (i_FI == 2 * iM)
ad_QMVAvg = ad_Q.^ (1 / 15);
ad_PBias = (ad_Q) * 0.9;
end
if (i_FI >= 2 * iM)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Bias Update
%
for i = 1 : iNumFilts,
if (ad_Q(i) > ad_PBias(i))
ad_PBias(i) = dLamda * ad_PBias(i) + (1 - dLamda) * ad_Q(i);
else
ad_PBias(i) = dLamda2 * ad_PBias(i) + (1 - dLamda2) * ad_Q(i);
end
end
for i = 1 : iNumFilts,
ad_Q_Out(i) = max(ad_Q(i) - ad_PBias(i), 0) ;
if (i_FI == 2 * iM)
ad_QMVAvg2(i) = 0.9 * ad_Q_Out(i);
ad_QMVAvg3(i) = ad_Q_Out(i);
ad_QMVPeak(i) = ad_Q_Out(i);
end
if (ad_Q_Out(i) > ad_QMVAvg2(i))
ad_QMVAvg2(i) = dLamda * ad_QMVAvg2(i) + (1 - dLamda) * ad_Q_Out(i);
else
ad_QMVAvg2(i) = dLamda2 * ad_QMVAvg2(i) + (1 - dLamda2) * ad_Q_Out(i);
end
dOrg = ad_Q_Out(i);
ad_QMVAvg3(i) = dLamda3 * ad_QMVAvg3(i);
if (ad_Q(i) < dFactor * ad_PBias(i))
ad_Q_Out(i) = ad_QMVAvg2(i);
else
if (ad_Q_Out(i) <= dDelta1 * ad_QMVAvg3(i))
ad_Q_Out(i) = dDelta2 * ad_QMVAvg3(i);
end
end
ad_QMVAvg3(i) = max(ad_QMVAvg3(i), dOrg);
ad_Q_Out(i) = max(ad_Q_Out(i), ad_QMVAvg2(i));
end
ad_w = ad_Q_Out ./ max(ad_Q, eps);
for i = 1 : iNumFilts,
if iSMType == 0
ad_w_sm(i) = mean(ad_w(max(i - iN, 1) : min(i + iN ,iNumFilts)));
elseif iSMType == 1
ad_w_sm(i) = exp(mean(log(ad_w(max(i - iN, 1) : min(i + iN ,iNumFilts)))));
elseif iSMType == 2
ad_w_sm(i) = mean((ad_w(max(i - iN, 1) : min(i + iN ,iNumFilts))).^(1/15))^15;
elseif iSMType == 3
ad_w_sm(i) = (mean( (ad_w(max(i - iN, 1) : min(i + iN ,iNumFilts))).^15 )) ^ (1 / 15);
end
end
aad_P_Out(i_FI_Out + 1, :) = ad_w_sm .* aad_P(i_FI - iM + 1, :);
adSumPower(i_FI_Out + 1) = sum(aad_P_Out(i_FI_Out + 1, :));
if adSumPower(i_FI_Out + 1) > dMean
dMean = dLamda_S * dMean + (1 - dLamda_S) * adSumPower(i_FI_Out + 1);
else
dMean = dLamda_L * dMean + (1 - dLamda_L) * adSumPower(i_FI_Out + 1);
end
aad_P_Out(i_FI_Out + 1, :) = aad_P_Out(i_FI_Out + 1, :) / (dMean) * MEAN_POWER;
i_FI_Out = i_FI_Out + 1;
end
else % if not SSF
adSumPower(i_FI + 1) = sum(aad_P(i_FI + 1, :));
if adSumPower(i_FI_Out + 1) > dMean
dMean = dLamda_S * dMean + (1 - dLamda_S) * adSumPower(i_FI_Out + 1);
else
dMean = dLamda_L * dMean + (1 - dLamda_L) * adSumPower(i_FI_Out + 1);
end
aad_P_Out(i_FI + 1, :) = aad_P(i_FI + 1, :) / (dMean) * MEAN_POWER;
end
i_FI = i_FI + 1;
end
%adSorted = sort(adSumPower);
%dMaxPower = adSorted(round(0.98 * length(adSumPower)));
%aad_P_Out = aad_P_Out / dMaxPower * 1e10;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Apply the nonlinearity
%
%dPowerCoeff
if bPowerLaw == 1
aadSpec = aad_P_Out .^ dPowerCoeff;
else
aadSpec = log(aad_P_Out + eps);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DCT
%
aadDCT = dct(aadSpec')';
%aadDCT(:, numcoeffs+1:iNumFilts) = [];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MVN
%
% for i = 1 : numcoeffs
% aadDCT( :, i ) = (aadDCT( : , i ) - mean(aadDCT( : , i)))/std(aadDCT(:,i));
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Temporal Derivatives
% calculate 1st derivative (velocity)
dt1 = deltacc(aadDCT', deltawindow);
% calculate 2nd derivative (acceleration)
dt2 = deltacc(dt1, accwindow);
% append dt1 and dt2 to mfcco
aadDCT = [aadDCT'; dt2];
% aadDCT = [aadDCT'; dt2];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Display
%
if bDisplay == 1
figure
aadSpec = idct(aadDCT', iNumFilts);
imagesc(aadSpec); axis xy;
end
aadDCT = aadDCT';
%{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Writing the feature in Sphinx format
%
[iM, iN] = size(aadDCT);
iNumData = iM * iN;
fid = fopen(szOutFeatFileName, 'wb');
fwrite(fid, iNumData, 'int32');
iCount = fwrite(fid, aadDCT(:), 'float32');
fclose(fid);
%}
end
function dt = deltacc(input, winlen)
% calculates derivatives of a matrix, whose columns are feature vectors
tmp = 0;
for cnt = 1 : winlen
tmp = tmp + cnt*cnt;
end
nrm = 1 / (2*tmp);
dt = zeros(size(input));
rows = size(input,1);
cols = size(input,2);
for col = 1 : cols
for cnt = 1 : winlen
inx1 = col - cnt; inx2 = col + cnt;
if inx1 < 1; inx1 = 1; end
if inx2 > cols; inx2 = cols; end
dt(:, col) = dt(:, col) + (input(:, inx2) - input(:, inx1)) * cnt;
end
end
dt = dt * nrm;
end
function [] = Queue_offer(ad_x)
global Queue_aad_P;
global Queue_iHead;
global Queue_iTail;
global Queue_iWindow;
global Queue_iNumElem;
Queue_aad_P(Queue_iTail + 1, :) = ad_x;
Queue_iTail = mod(Queue_iTail + 1, Queue_iWindow);
Queue_iNumElem = Queue_iNumElem + 1;
if Queue_iNumElem > Queue_iWindow
error ('Queue overflow');
end
end
function [ad_x] = Queue_poll()
global Queue_aad_P;
global Queue_iHead;
global Queue_iTail;
global Queue_iWindow;
global Queue_iNumElem;
if Queue_iNumElem <= 0
error ('No elements');
end
ad_x = Queue_aad_P(Queue_iHead + 1, :);
Queue_iHead = mod(Queue_iHead + 1, Queue_iWindow);
Queue_iNumElem = Queue_iNumElem - 1;
end
function[adMean] = Queue_avg()
global Queue_aad_P;
global Queue_iHead;
global Queue_iTail;
global Queue_iWindow;
global Queue_iNumElem;
global iNumFilts;
adMean = zeros(1, iNumFilts); % Changed from 40 (number of filter banks)
iPos = Queue_iHead;
for i = 1 : Queue_iNumElem
adMean = adMean + Queue_aad_P(iPos + 1 ,: );
iPos = mod(iPos + 1, Queue_iWindow);
end
adMean = adMean / Queue_iNumElem;
end
function test(testdir, n, code)
for k = 1:n % read test sound file of each speaker
file = sprintf('%ss%d.wav', testdir, k);
[s, fs] = audioread(file);
%x = s + 0.01*randn(length(s),1); %AWGN Noise
%[SNR1] = snr(s);
%[SNR2] = snr(x) ;
v = PNCC(s, fs); % Compute MFCC's
distmin = inf;
k1 = 0;
for l = 1:length(code) % each trained codebook, compute distortion
d = disteu(v, code{l});
dist = sum(min(d,[],2)) / size(d,1);
if dist < distmin
distmin = dist;
k1 = l;
end
end
msg = sprintf('speaker%d -->> s%d', k, k1);
disp(msg);
end
function r = vqlbg(d,k)
%
% Inputs: d contains training data vectors (one per column)
% k is number of centroids required
e = .01;
r = mean(d, 2);
dpr = 10000;
for i = 1:log2(k)
r = [r*(1+e), r*(1-e)];
while (1 == 1)
z = interdists(d, r);
[m,ind] = min(z, [], 2);
t = 0;
for j = 1:2^i
r(:, j) = mean(d(:, find(ind == j)), 2);
x = interdists(d(:, find(ind == j)), r(:, j));
for q = 1:length(x)
t = t + x(q);
end
end
if (((dpr - t)/t) < e)
break;
else
dpr = t;
end
end
end %Output: r contains the result VQ codebook (k columns, one for each centroids)

Related

Why does changing the boundary conditions cause the finite difference algorithm to diverge?

I wrote a finite difference algorithm to solve the wave equation which is derived here.
When I ran my code, the plotted graphs of the numerical and analytical solution deviated, which is the problem I am trying to solve. The finite difference algorithm is given in the snippet.
t_min = 0;
t_max = 10;
rps = 400; % Resolution per second
nt = t_max * rps;
t = linspace(t_min, t_max, nt);
dt = t(2) - t(1);
x_min = 0;
x_max = 8;
rpm = 100; % Resolution per menter
nx = x_max * rpm;
x = linspace(x_min, x_max, nx);
dx = x(2) - x(1);
c = 3; % Wave speed
A = pi; % Amplitude
L = x_max; % Rod lenght
w_o = 1; % Circular frequency
Cn = c * (dt / dx); % Courrant number
if Cn > 1 % Stability criteria
error('The stability condition is not satisfied.');
end
U = zeros(nx, nt);
U(:, 1) = zeros(nx, 1);
U(:, 2) = zeros(nx, 1);
U(1, :) = A * sin(w_o * t);
U(end, :) = zeros(1, nt);
for j = 2 : (nt - 1)
for i = 2 : (nx - 1)
U(i, j + 1) = Cn^2 * ( U(i + 1, j) - 2 * U(i, j) + U(i - 1, j) ) + 2 * U(i, j) - U(i, j - 1);
end
end
figure('Name', 'Numeric solution');
surface(t, x, U, 'edgecolor', 'none');
grid on
colormap(jet(256));
colorbar;
xlabel('t ({\its})');
ylabel('x ({\itm})');
title('U(t, x) ({\itm})');
To find the bug, I tryed to change the boundary conditions and see if my graph would look better. It turned out that it did, which means that the code in my double for loop is ok. The boundary conditions are the problem. However, I do not know why the code works with the new boundary conditions and does not with the old ones. I am hoping that somebody will point this out to me. The code I ran is given in the snippet.
t_min = 0;
t_max = 1;
rps = 400; % Resolution per second
nt = t_max * rps;
t = linspace(t_min, t_max, nt);
dt = t(2) - t(1);
x_min = 0;
x_max = 1;
rpm = 100; % Resolution per menter
nx = x_max * rpm;
x = linspace(x_min, x_max, nx);
dx = x(2) - x(1);
c = 3; % Wave speed
A = pi; % Amplitude
L = x_max; % Rod lenght
w_o = 1; % Circular frequency
Cn = c * (dt / dx); % Courrant number
if Cn > 1 % Stability criteria
error('The stability condition is not satisfied.');
end
U = zeros(nx, nt);
U(:, 1) = sin(pi*x);
U(:, 2) = sin(pi*x) * (1 + dt);
U(1, :) = zeros(1, nt);
U(end, :) = zeros(1, nt);
for j = 2 : (nt - 1)
for i = 2 : (nx - 1)
U(i, j + 1) = Cn^2 * ( U(i + 1, j) - 2 * U(i, j) + U(i - 1, j) ) + 2 * U(i, j) - U(i, j - 1);
end
end
figure('Name', 'Numeric solution');
surface(t, x, U, 'edgecolor', 'none');
grid on
colormap(jet(256));
colorbar;
xlabel('t ({\its})');
ylabel('x ({\itm})');
title('U(t, x) ({\itm})');

Berlekamp Massey Algorithm for BCH simplified binary version

I am trying to follow Lin, Costello's explanation of the simplified BM algorithm for the binary case in page 210 of chapter 6 with no success on finding the error locator polynomial.
I'm trying to implement it in MATLAB like this:
function [locator_polynom] = compute_error_locator(syndrome, t, m, field, alpha_powers)
%
% Initial conditions for the BM algorithm
polynom_length = 2*t;
syndrome = [syndrome; zeros(3, 1)];
% Delta matrix storing the powers of alpha in the corresponding place
delta_rho = uint32(zeros(polynom_length, 1)); delta_rho(1)=1;
delta_next = uint32(zeros(polynom_length, 1));
% Premilimnary values
n_max = uint32(2^m - 1);
% Initialize step mu = 1
delta_next(1) = 1; delta_next(2) = syndrome(1); % 1 + S1*X
% The discrepancy is stored in polynomial representation as uint32 numbers
value = gf_mul_elements(delta_next(2), syndrome(2), field, alpha_powers, n_max);
discrepancy_next = bitxor(syndrome(3), value);
% The degree of the locator polynomial
locator_degree_rho = 0;
locator_degree_next = 1;
% Update all values
locator_polynom = delta_next;
delta_current = delta_next;
discrepancy_rho = syndrome(1);
discrepancy_current = discrepancy_next;
locator_degree_current = locator_degree_next;
rho = 0; % The row with the maximum value of 2mu - l starts at 1
for i = 1:t % Only the even steps are needed (so make t out of 2*t)
if discrepancy_current ~= 0
% Compute the correction factor
correction_factor = uint32(zeros(polynom_length, 1));
x_exponent = 2*(i - rho);
if (discrepancy_current == 1 || discrepancy_rho == 1)
d_mu_times_rho = discrepancy_current * discrepancy_rho;
else
alpha_discrepancy_mu = alpha_powers(discrepancy_current);
alpha_discrepancy_rho = alpha_powers(discrepancy_rho);
alpha_inver_discrepancy_rho = n_max - alpha_discrepancy_rho;
% The alpha power for dmu * drho^-1 is
alpha_d_mu_times_rho = alpha_discrepancy_mu + alpha_inver_discrepancy_rho;
% Equivalent to aux mod(2^m - 1)
alpha_d_mu_times_rho = alpha_d_mu_times_rho - ...
n_max * uint32(alpha_d_mu_times_rho > n_max);
d_mu_times_rho = field(alpha_d_mu_times_rho);
end
correction_factor(x_exponent+1) = d_mu_times_rho;
correction_factor = gf_mul_polynoms(correction_factor,...
delta_rho,...
field, alpha_powers, n_max);
% Finally we add the correction factor to get the new delta
delta_next = bitxor(delta_current, correction_factor(1:polynom_length));
% Update used data
l = polynom_length;
while delta_next(l) == 0 && l>0
l = l - 1;
end
locator_degree_next = l-1;
% Update previous maximum if the degree is higher than recorded
if (2*i - locator_degree_current) > (2*rho - locator_degree_rho)
locator_degree_rho = locator_degree_current;
delta_rho = delta_current;
discrepancy_rho = discrepancy_current;
rho = i;
end
else
% If the discrepancy is 0, the locator polynomial for this step
% is passed to the next one. It satifies all newtons' equations
% until now.
delta_next = delta_current;
end
% Compute the discrepancy for the next step
syndrome_start_index = 2 * i + 3;
discrepancy_next = syndrome(syndrome_start_index); % First value
for k = 1:locator_degree_next
value = gf_mul_elements(delta_next(k + 1), ...
syndrome(syndrome_start_index - k), ...
field, alpha_powers, n_max);
discrepancy_next = bitxor(discrepancy_next, value);
end
% Update all values
locator_polynom = delta_next;
delta_current = delta_next;
discrepancy_current = discrepancy_next;
locator_degree_current = locator_degree_next;
end
end
I'm trying to see what's wrong but I can't. It works for the examples in the book, but not always. As an aside, to compute the discrepancy S_2mu+3 is needed, but when I have only 24 syndrome coefficients how is it computed on step 11 where 2*11 + 3 is 25?
Thanks in advance!
It turns out the code is ok. I made a different implementation from Error Correction and Coding. Mathematical Methods and gives the same result. My problem is at the Chien Search.
Code for the interested:
function [c] = compute_error_locator_v2(syndrome, m, field, alpha_powers)
%
% Initial conditions for the BM algorithm
% Premilimnary values
N = length(syndrome);
n_max = uint32(2^m - 1);
polynom_length = N/2 + 1;
L = 0; % The curent length of the LFSR
% The current connection polynomial
c = uint32(zeros(polynom_length, 1)); c(1) = 1;
% The connection polynomial before last length change
p = uint32(zeros(polynom_length, 1)); p(1) = 1;
l = 1; % l is k - m, the amount of shift in update
dm = 1; % The previous discrepancy
for k = 1:2:N % For k = 1 to N in steps of 2
% ========= Compute discrepancy ==========
d = syndrome(k);
for i = 1:L
aux = gf_mul_elements(c(i+1), syndrome(k-i), field, alpha_powers, n_max);
d = bitxor(d, aux);
end
if d == 0 % No change in polynomial
l = l + 1;
else
% ======== Update c ========
t = c;
% Compute the correction factor
correction_factor = uint32(zeros(polynom_length, 1));
% This is d * dm^-1
dd_sum = modulo(alpha_powers(d) + n_max - alpha_powers(dm), n_max);
for i = 0:polynom_length - 1
if p(i+1) ~= 0
% Here we compute d*d^-1*p(x_i)
ddp_sum = modulo(dd_sum + alpha_powers(p(i+1)), n_max);
if ddp_sum == 0
correction_factor(i + l + 1) = 1;
else
correction_factor(i + l + 1) = field(ddp_sum);
end
end
end
% Finally we add the correction factor to get the new locator
c = bitxor(c, correction_factor);
if (2*L >= k) % No length change in update
l = l + 1;
else
p = t;
L = k - L;
dm = d;
l = 1;
end
end
l = l + 1;
end
end
The code comes from this implementation of the Massey algorithm

Matlab parfor + multi-processing

I am trying to run some code that creates a sketch from an image:
https://github.com/panly099/sketchSynthesis
After getting it going on windows, im running into what I think are performance issues. The program is supposed to complete the task in 5 minutes, but my computer wont complete the task at all (ive waited at least 30 minutes)
I got some advice that I need to look into "parfor" and multiprocessing to speed it up/get it to complete the task.
Im wondering if someone could explain it to me simply how I might be able to speed it up to complete the image in under 5 minutes.
The code im supposed to edit is:
https://github.com/panly099/sketchSynthesis/blob/master/functions/sketchDetect.m
function [ detection ] = sketchDetect(sample, strokeModel, configurations, searchRatio, threshold, appGeoWeight)
% This function anchors the stroke model on the given input sketch or edge
% map sample via a dynamic programming process.
% Input :
% sample : the input sketch or edge map sample.
% strokeModel : the stroke model.
% configurations : the sampled configurations of the object.
% searchRatio : the search ratio of the original stroke bounding box.
% threshold : the chamfer matching threshold.
% appGeoWeight : the balance between the appearance and the geometry.
% Output :
% detection : the detected model instance.
% Author :
% panly099#gmail.com
% Version :
% 1.1 07/06/2016
if nargin < 5
threshold = 0.5;
end
if nargin < 6
appGeoWeight = 0.5;
end
baseScale = 1;
baseAspect = 1;
overlapWeight = 0.001;
mst = strokeModel.mst;
avgWidth = strokeModel.avgWidth;
avgHeight = strokeModel.avgHeight;
clusterBbox = strokeModel.clusterBbox;
[height, width] = size(sample);
numConf = length(configurations);
detections = cell(1, numConf);
energy = zeros(1,numConf);
for a = 1 : numConf
configuration = configurations{a};
%% sampling by fast directional chamfer matching (fdcm)
numCluster = length(configuration);
strokeCandidates = cell(1, numCluster);
parfor j = 1 : numCluster
fprintf('current stroke id: %d\n', j);
strokeImg = configuration{j};
strBbox = getBoundingBox(strokeImg,0);
strokeImg = strokeImg(strBbox(2):strBbox(4), strBbox(1):strBbox(3));
% compute the search region
curBbox = clusterBbox(:,j)';
% curBbox = strBbox;
curWidth = curBbox(3) - curBbox(1);
curHeight = curBbox(4) - curBbox(2);
searchRegion = [curBbox(1) - ceil((searchRatio - 1) / 2 * curWidth), curBbox(2) - ceil((searchRatio - 1) / 2 * curHeight), ...
curBbox(3) + ceil((searchRatio - 1) / 2 * curWidth), curBbox(4) + ceil((searchRatio - 1) / 2 * curHeight)];
if searchRegion(1) < 1
searchRegion(1) = 1;
end
if searchRegion(2) < 1
searchRegion(2) = 1;
end
if searchRegion(3) > width
searchRegion(3) = width;
end
if searchRegion(4) > height
searchRegion(4) = height;
end
img = sample(searchRegion(2):searchRegion(4), searchRegion(1):searchRegion(3));
% fdcm anchoring
[strokeMatched, cost] = chamferLocate(img, strokeImg, baseScale, baseAspect, threshold);
% figure;imshow(~strokeImg);figure;imshow(~img);
if size(strokeMatched,1) > 1000
stop = 1;
end
for s = 1 : length(strokeMatched)
tmpSample = zeros(height, width);
tmpSample(searchRegion(2):searchRegion(4), searchRegion(1):searchRegion(3)) = strokeMatched{s};
if cost(s) <= 0
cost(s) = 1;
end
strokeCandidates{j}(s,:) = [{tmpSample}, cost(s)];
% figure;imshow(~strokeMatched{s});
end
% figure;imshow(sample);
end
%% energy minimization by dynamic programming
% backward
fprintf('Backward propogation\n');
for i = length(mst) : -1 : 2
fprintf('Scanning MST layer: %d\n', i);
curLayer = mst{i};
for j = 1 : length(curLayer)
% parents = [];
curEdge = curLayer{j};
curParent = curEdge{1}(2);
% parents = [parents curParent];
curChild = curEdge{1}(1);
curParam = curEdge{2};
curParentChildIdx = size(strokeCandidates{curParent},2) + 1;
curParentCandidates = strokeCandidates{curParent}(:,1);
curChildCandidates = strokeCandidates{curChild};
for p = 1 : length(curParentCandidates)
tmpBbox = getBoundingBox(curParentCandidates{p}, 0);
curParentCenter = ceil([(tmpBbox(2)+tmpBbox(4))/2, (tmpBbox(1)+tmpBbox(3))/2]);
childCosts = ones(1, size(curChildCandidates, 1))*Inf;
for c = 1 : size(curChildCandidates, 1)
tmpBbox = getBoundingBox(curChildCandidates{c,1},0);
curChildCenter = ceil([(tmpBbox(2)+tmpBbox(4))/2, (tmpBbox(1)+tmpBbox(3))/2]);
geoNorm = 1/40;
curCost = appGeoWeight * curChildCandidates{c,2} - (1-appGeoWeight) * geoNorm * log(mvnpdf(curChildCenter-curParentCenter, ...
curParam{2},curParam{3}));
for gc = 3 : size(curChildCandidates,2)
curCost = curCost + curChildCandidates{c,gc}(2);
end
childCosts(c) = curCost;
end
[minCost, minIdx] = min(childCosts);
if minCost == Inf
stop = 1;
end
strokeCandidates{curParent}{p, curParentChildIdx} = [curChild, minCost, minIdx];
end
% % adding overlapping penalty
% parents = unique(parents);
% for u = 1 : length(parents)
% curParent = parents(u);
% for p = 1 : size(strokeCandidates{curParent}, 1)
% curParentImg = strokeCandidates{curParent}{p,1};
% overlapCost = 0;
% for c = 3 : size(strokeCandidates{curParent}, 2)
% curChild = strokeCandidates{curParent}{p,c}(1);
% curChildIdx = strokeCandidates{curParent}{p,c}(3);
% curChildImg = strokeCandidates{curChild}{curChildIdx,1};
% curOverlap = curParentImg.*curChildImg;
% overlapCost = overlapCost + sum(curOverlap(:)) * overlapWeight;
% end
% strokeCandidates{curParent}{p,2} = strokeCandidates{curParent}{p,2} + overlapCost;
% end
% end
end
end
% forward
fprintf('forward propogation\n');
fprintf('Scanning MST layer: %d\n', 1);
detection = cell(1, numCluster);
root = mst{1};
rootCosts = [];
for i = 1 : size(strokeCandidates{root},1)
cost = strokeCandidates{root}{i,2};
for j = 3 : size(strokeCandidates{root},2)
cost = cost + strokeCandidates{root}{i,j}(2);
end
rootCosts(end+1) = cost;
end
[~,rootSelected] = min(rootCosts);
minCost = rootCosts(rootSelected);
detection{root} = strokeCandidates{root}{rootSelected, 1};
for i = 2 : length(mst)
fprintf('Scanning MST layer: %d\n', i);
curLayer = mst{i};
for j = 1 : length(curLayer)
curEdge = curLayer{j};
curParent = curEdge{1}(2);
curChild = curEdge{1}(1);
curParam = curEdge{2};
curParentCandidate = detection{curParent};
curChildCandidates = strokeCandidates{curChild};
tmpBbox = getBoundingBox(curParentCandidate, 0);
curParentCenter = ceil([(tmpBbox(2)+tmpBbox(4))/2, (tmpBbox(1)+tmpBbox(3))/2]);
childCosts = ones(1, size(curChildCandidates, 1))*Inf;
for c = 1 : size(curChildCandidates, 1)
tmpBbox = getBoundingBox(curChildCandidates{c,1},0);
curChildCenter = ceil([(tmpBbox(2)+tmpBbox(4))/2, (tmpBbox(1)+tmpBbox(3))/2]);
geoNorm = 1/40;
curCost = appGeoWeight * curChildCandidates{c,2} - (1-appGeoWeight) * geoNorm * log(mvnpdf(curChildCenter-curParentCenter, ...
curParam{2},curParam{3}));
for gc = 3 : size(curChildCandidates,2)
curCost = curCost + curChildCandidates{c,gc}(2);
end
childCosts(c) = curCost;
end
[~, minId] = min(childCosts);
detection{curChild} = curChildCandidates{minId,1};
end
end
detections{a} = detection;
energy(a) = minCost;
end
[~,minIdx] = min(energy);
detection = detections{minIdx};
% visualize the detection
% synthesized = zeros(height, width);
% for i = 1 : length(detection)
% if sum(detection{i}(:))>1
% synthesized = synthesized + detection{i};
% end
% end
% figure;imshow(~sample);
% figure;imshow(~synthesized);
end

Matlab - ode15s "Too many Input Arguments"

I am trying to create a program to solve a moment methods for a polymer reaction. However, when im run the code this error appears "Too many Input Arguments", any help? (sorry for bad english)
Code:
First function
function dydt = osc(t,y)
ka1 = 10^6;
ka2 = 0.15*10^6;
kp = 2952;
kd = 0.106*2952;
ks = 10^6;
%y=[C,A,ROH,I,M,Lambda,Mi] <=> y(1,:)=[C] ; y(2,:)=[A]
% y(3,:)=[ROH] ; y(4,:)=[I]
% y(5,:)=[M] ;
% y(6-8,:)=[Lambda] onde: %y(6) - lambda0 ;
y(7) - lambda1 ; y(8) - lambda2
% y(9-11,:)=[Mi] onde: %y(9) - mi0 ; y(10) -
mi1 ; y(11) - mi2
% y(12,:)=[R1] ; y(13;:) = [D1]
j = 10;
syms n
%Variables
dydt(1,1) = - ka1*y(1)*y(3) + ka2*y(4)*y(2) - ka1*y(1)
dydt(2,1) = + ka1*y(1)*y(3) - ka2*y(4)*y(2) + ka1*y(1)
dydt(3,1) = - ka1*y(1)*y(3) + ka2*y(4)*y(2) - ks*y(3)*
dydt(4,1) = - kp*y(5)*y(4) + kd*y(12) + ka1*y(1)*y(3) - ka2*y(4)*y(2)
%Living Chains
dydt(6,1) = + ka1*y(1)*symsum((n^0)*y(9), n, [1 j])
dydt(7,1) = + ka1*y(1)*symsum((n^1)*y(10), n, [1 j])
dydt(8,1) = + ka1*y(1)*symsum((n^2)*y(11), n, [1 j])
%Dormant Chains
dydt(9,1) = - ka1*y(1)*symsum((n^0)*y(9), n, [1 j])
dydt(10,1) = - ka1*y(1)*symsum((n^1)*y(10), n, [1 j]) +
dydt(11,1) = - ka1*y(1)*symsum((n^2)*y(11), n, [1 j])
%R1 e D1
dydt(12,1) = + kp*y(5)*y(4) - kp*y(5)*y(12) + kd*((y(12)+1) - y(12))
dydt(13,1) = - ka1*y(1)*y(13) + ka2*y(2)*y(13) + ks*y(3)*y(12)
end
Second function
function [t,y]= call_osc()
%Tempo
tspan = [0 1];
%Initial conditions
C = 2.582;
A = 3.9*10^3;
ROH = 0.387*10^2;
I = 10^3;
M = 1460.495;
Rn0 = 0;
Rn1 = 0;
Rn2 = 0;
Dn0 = 0;
Dn1 = 0;
Dn2 = 0;
R1 = 1;
D1 = 1;
y0 = [C; A; ROH; I; M; Rn0; Rn1; Rn2; Dn0; Dn1; Dn2; R1; D1];
[t,y] = ode15s(#osc, tspan, y0);
disp(y(:,1))
end

Matrix calculation gets slower after each iteration in matlab

I have a 1024*1024*51 matrix. I'll do calculations to change some value of the matrix within for loops (change the value of matrix for each iteration). I find that the computing speed gets slower and slower and finally my computer gets into trouble.However the size of the matrix doesn't change. Anyone can shed some light on this problem?
function ActiveContours3D(method,grad,im,mu,nu,lambda1,lambda2,TimeSteps)
epsilon = 10e-10;
tic
fid=fopen('Chr18_z_25of25tiles-C=0_c0_n000.raw','rb','ieee-le');
Xdim = 1024;
Ydim = 1024;
Zdim = 51;
A = fread(fid,[Xdim Ydim*Zdim],'int16');
A = double(A);
size_of_A = size(A)
for(i=1:Zdim)
u0_color(:,:,i) = A(1 : Xdim , (i-1)*Ydim+1 : i*Ydim);
end
fclose(fid)
time = toc
[M,N,P,color] = size(u0_color);
size(u0_color );
u0_color = double(u0_color); % Convert u0_color values to double;
u0 = u0_color(:,:,:,1); % Define the Grayscale volumetric image.
u0_color = uint8(u0_color); % Necessary for color visualization
x = 1:M;
y = 1:N;
z = 1:P;
dx = 1
dy = 1
dz = 1
dim_approx = 2*M*N*P / sqrt(M*N*P);
if(method == 'Explicit')
dt = 0.9 / ((2*mu/(dx^2)) + (2*mu/(dy^2)) + (2*mu/(dz^2))) % 90% CFL
elseif(method == 'Implicit')
dt = (10e7) * 0.9 / ((2*mu/(dx^2)) + (2*mu/(dy^2)) + (2*mu/(dz^2)))
end
[X,Y,Z] = meshgrid(x,y,z);
x0 = (M+1)/2;
y0 = (N+1)/2;
z0 = (P+1)/2;
r0 = min(min(M,N),P)/3;
phi = sqrt((X-x0).^2 + (Y-y0).^2 + (Z-z0).^2) - r0;
phi_visualize = phi; % Use this for visualization in 3D
phi = permute(phi,[2,1,3]); % Use this for computations in 3D
write_to_binary_file(phi_visualize,0); % record initial conditions
tic
for(n=1:TimeSteps)
n
c1 = C1_3d(u0,phi);
c2 = C2_3d(u0,phi);
% x
phi_xp = [phi(2:M,:,:); phi(M,:,:)]; % vertical concatenation
phi_xm = [phi(1,:,:); phi(1:M-1,:,:)]; % (since x values are rows)
% cat(1,A,B) is the same as [A;B]
Dx_m = (phi - phi_xm)/dx; % first derivatives
Dx_p = (phi_xp - phi)/dx;
Dxx = (Dx_p - Dx_m)/dx; % second derivative
% y
phi_yp = [phi(:,2:N,:) phi(:,N,:)]; % horizontal concatenation
phi_ym = [phi(:,1,:) phi(:,1:N-1,:)]; % (since y values are columns)
% cat(2,A,B) is the same as [A,B]
Dy_m = (phi - phi_ym)/dy;
Dy_p = (phi_yp - phi)/dy;
Dyy = (Dy_p - Dy_m)/dy;
% z
phi_zp = cat(3,phi(:,:,2:P),phi(:,:,P));
phi_zm = cat(3,phi(:,:,1) ,phi(:,:,1:P-1));
Dz_m = (phi - phi_zm)/dz;
Dz_p = (phi_zp - phi)/dz;
Dzz = (Dz_p - Dz_m)/dz;
% x,y,z
Dx_0 = (phi_xp - phi_xm) / (2*dx);
Dy_0 = (phi_yp - phi_ym) / (2*dy);
Dz_0 = (phi_zp - phi_zm) / (2*dz);
phi_xp_yp = [phi_xp(:,2:N,:) phi_xp(:,N,:)];
phi_xp_ym = [phi_xp(:,1,:) phi_xp(:,1:N-1,:)];
phi_xm_yp = [phi_xm(:,2:N,:) phi_xm(:,N,:)];
phi_xm_ym = [phi_xm(:,1,:) phi_xm(:,1:N-1,:)];
phi_xp_zp = cat(3,phi_xp(:,:,2:P),phi_xp(:,:,P));
phi_xp_zm = cat(3,phi_xp(:,:,1) ,phi_xp(:,:,1:P-1));
phi_xm_zp = cat(3,phi_xm(:,:,2:P),phi_xm(:,:,P));
phi_xm_zm = cat(3,phi_xm(:,:,1) ,phi_xm(:,:,1:P-1));
phi_yp_zp = cat(3,phi_yp(:,:,2:P),phi_yp(:,:,P));
phi_yp_zm = cat(3,phi_yp(:,:,1) ,phi_yp(:,:,1:P-1));
phi_ym_zp = cat(3,phi_ym(:,:,2:P),phi_ym(:,:,P));
phi_ym_zm = cat(3,phi_ym(:,:,1) ,phi_ym(:,:,1:P-1));
if(grad == 'Dirac')
Grad = DiracDelta(phi); % Dirac delta
%Grad = 1;
elseif(grad == 'Grad ')
Grad = (((Dx_0.^2)+(Dy_0.^2)+(Dz_0.^2)).^(1/2)); % |grad phi|
end
if(method == 'Explicit')
% CURVATURE: *mu*k|grad phi|* (central differences):
K = zeros(M,N,P);
Dxy = (phi_xp_yp - phi_xp_ym - phi_xm_yp + phi_xm_ym) / (4*dx*dy);
Dxz = (phi_xp_zp - phi_xp_zm - phi_xm_zp + phi_xm_zm) / (4*dx*dz);
Dyz = (phi_yp_zp - phi_yp_zm - phi_ym_zp + phi_ym_zm) / (4*dy*dz);
K = ( (Dx_0.^2).*Dyy - 2*Dx_0.*Dy_0.*Dxy + (Dy_0.^2).*Dxx ...
+ (Dx_0.^2).*Dzz - 2*Dx_0.*Dz_0.*Dxz + (Dz_0.^2).*Dxx ...
+ (Dy_0.^2).*Dzz - 2*Dy_0.*Dz_0.*Dyz + (Dz_0.^2).*Dyy) ./ ((Dx_0.^2 + Dy_0.^2 + Dz_0.^2).^(3/2) + epsilon);
phi_temp = phi + dt * Grad .* ( mu.*K + lambda1*(u0 - c1).^2 - lambda2*(u0 - c2).^2 );
elseif(method == 'Implicit')
C1x = 1 ./ sqrt(Dx_p.^2 + Dy_0.^2 + Dz_0.^2 + (10e-7)^2);
C2x = 1 ./ sqrt(Dx_m.^2 + Dy_0.^2 + Dz_0.^2 + (10e-7)^2);
C3y = 1 ./ sqrt(Dx_0.^2 + Dy_p.^2 + Dz_0.^2 + (10e-7)^2);
C4y = 1 ./ sqrt(Dx_0.^2 + Dy_m.^2 + Dz_0.^2 + (10e-7)^2);
C5z = 1 ./ sqrt(Dx_0.^2 + Dy_0.^2 + Dz_p.^2 + (10e-7)^2);
C6z = 1 ./ sqrt(Dx_0.^2 + Dy_0.^2 + Dz_m.^2 + (10e-7)^2);
% m = (dt/(dx*dy)) * Grad .* mu; % 2D
m = (dt/(dx*dy)) * Grad .* mu;
C = 1 + m.*(C1x + C2x + C3y + C4y + C5z + C6z);
C1x_2x = C1x.*phi_xp + C2x.*phi_xm;
C3y_4y = C3y.*phi_yp + C4y.*phi_ym;
C5z_6z = C5z.*phi_zp + C6z.*phi_zm;
phi_temp = (1 ./ C) .* ( phi + m.*(C1x_2x+C3y_4y) + (dt*Grad).*(lambda1*(u0 - c1).^2) - (dt*Grad).*(lambda2*(u0 - c2).^2) );
end
phi = phi_temp;
phi_visualize = permute(phi,[2,1,3]);
write_to_binary_file(phi_visualize,n); % record
end
time = toc
n = n
T = dt*n
clear
clear all
In general Matlab keeps track of all the variables in the form of matrix. When you work with lot of variables with many dimensions the RAM memory will be allocated for storing this variable. Hence on working with lots of variables that is gonna run for multiple iterations it is better to clear the variable from the memory. To do so use the command
clear variable_name_1, variable_name_2,... variable_name_3;
Although keeping all the variables keeps the code to look organised, however when you face such issues try clearing the unwanted variables.
Check this link to use clear command in detail: http://www.mathworks.in/help/matlab/ref/clear.html