Kubernetes pod resource limiting/quotas as a percentage of host resources (relative) rather than using absolute values? - kubernetes

Resource limiting of containers in pods is typically achieved using something like below -
resources
limits
cpu "600m"
requests
cpu "400m"
As you see, absolute values are used above.
Now,
If the server/host has, say, 1 core then the total CPU computing power of the server is 1,000m. And the container is limited to 600m of computing power, which makes sense.
But, if the server/host has say 16 cores then the total CPU computing power of server is 16,000m. But the container is still restricted to 600m of computing power, which might not make complete sense in every case.
What I instead want is to define limits/requests as a percentage of host resources. Something like below.
resources
limits
cpu "60%"
requests
cpu "40%"
Is this possible in k8s either out-of-box or using any CRD's?

Related

kubernetes resource requests and limits adjustments

I have a k8s cluster in GKE with node autoscaler turned on. I want to maximize the resource utilization, and have applied all the suggestion on requests/limit changes recommended by GKE. At this moment there is 4 nodes as shown in the image below. They all uses n2-standard-2 i.e. 4 GB of memory per vCPU.
Memory request to allocatable ration is quite high compared to CPU request/allocatable.
Wondering if any other machine machine type that better suits my case. or any other resource optimization recommendation?
In GKE You can select custom compute sizes.
We find most workloads work best in 1:4 vCPU to Memory ratio (Hence the default). But it's possible to support other workload types. For your workload it looks like 1:2 for vCPU to Memory would be appropriate.
Also, it's hard to know exactly what sort of resource limit to set. You should look into generating some load for your cluster and using VPA to get a suggestion made by GKE cluster to be able to right size the limits.

How is CPU usage calculated in Grafana?

Here's an image taken from Grafana which shows the CPU usage, requests and limits, as well as throttling, for a pod running in a K8s cluster.
As you can see, the CPU usage of the pod is very low compared to the requests and limits. However, there is around 25% of CPU throttling.
Here are my questions:
How is the CPU usage (yellow) calculated?
How is the ~25% CPU throttling (green) calculated?
How is it possible that the CPU throttles when the allocated resources for the pod are so much higher than the usage?
Extra info:
The yellow is showing container_cpu_usage_seconds_total.
The green is container_cpu_cfs_throttled_periods_total / container_cpu_cfs_periods_total

Set cpu requests in K8s for fluctuating load

I have a service deployed in Kubernetes and I am trying to optimize the requested cpu resources.
For now, I have deployed 10 instances and set spec.containers[].resources.limits.cpu to 0.1, based on the "average" use. However, it became obvious that this average is rather useless in practice because under constant load, the load increases significantly (to 0.3-0.4 as far as I can tell).
What happens consequently, when multiple instances are deployed on the same node, is that this node is heavily overloaded; pods are no longer responsive, are killed and restarted etc.
What is the best practice to find a good value? My current best guess is to increase the requested cpu to 0.3 or 0.4; I'm looking at Grafana visualizations and see that the pods on the heavily loaded node(s) converge there under continuous load.
However, how can I know if they would use more load if they could before becoming unresponsive as the node is overloaded?
I'm actually trying to understand how to approach this in general. I would expect an "ideal" service (presuming it is CPU-focused) to use close to 0.0 when there is no load, and close to 1.0 when requests are constantly coming in. With that assumption, should I set the cpu.requests to 1.0, taking a perspective where actual constant usage is assumed?
I have read some Kubernetes best practice guides, but none of them seem to address how to set the actual value for cpu requests in practice in more depth than "find an average".
Basically come up with a number that is your lower acceptable bound for how much the process runs. Setting a request of 100m means that you are okay with a lower limit of your process running 0.1 seconds for every 1 second of wall time (roughly). Normally that should be some kind of average utilization, usually something like a P99 or P95 value over several days or weeks. Personally I usually look at a chart of P99, P80, and P50 (median) over 30 days and use that to decide on a value.
Limits are a different beast, they are setting your CPU timeslice quota. This subsystem in Linux has some persistent bugs so unless you've specifically vetted your kernel as correct, I don't recommend using it for anything but the most hostile of programs.
In a nutshell: Main goal is to understand how much traffic a pod can handle and how much resource it consumes to do so.
CPU limits are hard to understand and can be harmful, you might want
to avoid them, see static policy documentation and relevant
github issue.
To dimension your CPU requests you will want to understand first how much a pod can consume during high load. In order to do this you can :
disable all kind of autoscaling (HPA, vertical pod autoscaler, ...)
set the number of replicas to one
lift the CPU limits
request the highest amount of CPU you can on a node (3.2 usually on 4cpu nodes)
send as much traffic as you can on the application (you can achieve simple Load Tests scenarios with locust for example)
You will eventually end up with a ratio clients-or-requests-per-sec/cpu-consumed. You can suppose the relation is linear (this might not be true if your workload complexity is O(n^2) with n the number of clients connected, but this is not the nominal case).
You can then choose the pod resource requests based on the ratio you measured. For example if you consume 1.2 cpu for 1000 requests per second you know that you can give each pod 1 cpu and it will handle up to 800 requests per second.
Once you know how much a pod can consume under its maximal load, you can start setting up cpu-based autoscaling, 70% is a good first target that can be refined if you encounter issues like latency or pods not autoscaling fast enough. This will avoid your nodes to run out of cpu if the load increases.
There are a few gotchas, for example single-threaded applications are not able to consume more than a cpu. Thus if you give it 1.5 cpu it will run out of cpu but you won't be able to visualize it from metrics as you'll believe it still can consume 0.5 cpu.

Query on kubernetes metrics-server metrics values

I am using metrics-server(https://github.com/kubernetes-incubator/metrics-server/) to collect the core metrics from containers in a kubernetes cluster.
I could fetch 2 resource usage metrics per container.
cpu usage
memory usage
However its not clear to me whether
these metrics are accumulated over time or they are already sampled for a particular time window(1 minute/ 30 seconds..)
What are the units for the above metric values. For CPU usage, is it the number of cores or milliseconds? And for memory usage i assume its the bytes usage.
While computing CPU usage metric value, does metrics-server already take care of dividing the container usage by the host system usage?
Also, if i have to compare these metrics with the docker-api metrics, how to compute CPU usage % for a given container?
Thanks!
Metrics are scraped periodically from kubelets. The default resolution duration is 60s, which can be overriden with the --metric-resolution=<duration> flag.
The value and unit (cpu - cores in decimal SI, memory - bytes in binary SI) are arrived at by using the Quantity serializer in the k8s apimachinery package. You can read about it from the comments in the source code
No, the CPU metric is not relative to the host system usage as you can see that it's not a percentage value. It represents the rate of change of the total amount of CPU seconds consumed by the container by core. If this value increases by 1 within one second, the pod consumes 1 CPU core (or 1000 milli-cores) in that second.
To arrive at a relative value, depending on your use case, you can divide the CPU metric for a pod by that for the node, since metrics-server exposes both /pods and /nodes endpoints.

Choosing the compute resources of the nodes in the cluster with horizontal scaling

Horizontal scaling means that we scale by adding more machines into the pool of resources. Still, there is a choice of how much power (CPU, RAM) each node in the cluster will have.
When cluster managed with Kubernetes it is extremely easy to set any CPU and memory limit for Pods. How to choose the optimal CPU and memory size for cluster nodes (or Pods in Kubernetes)?
For example, there are 3 nodes in a cluster with 1 vCPU and 1GB RAM each. To handle more load there are 2 options:
Add the 4th node with 1 vCPU and 1GB RAM
Add to each of the 3 nodes more power (e.g. 2 vCPU and 2GB RAM)
A straightforward solution is to calculate the throughput and cost of each option and choose the cheaper one. Are there any more advanced approaches for choosing the compute resources of the nodes in a cluster with horizontal scalability?
For this particular example I would go for 2x vCPU instead of another 1vCPU node, but that is mainly cause I believe running OS for anything serious on a single vCPU is just wrong. System to behave decently needs 2+ cores available, otherwise it's too easy to overwhelm that one vCPU and send the node into dust. There is no ideal algorithm for this though. It will depend on your budget, on characteristics of your workloads etc.
As a rule of thumb, don't stick to too small instances as you have a bunch of stuff that has to run on them always, regardless of their size and the more node, the more overhead. 3x 4vCpu+16/32GB RAM sounds like nice plan for starters, but again... it depends on what you want, need and can afford.
The answer is related to such performance metrics as latency and throughput:
Latency is a time interval between sending request and receiving response.
Throughput is a request processing rate (requests per second).
Latency has influence on throughput: bigger latency = less throughput.
If a business transaction consists of multiple sequential calls of the services that can't be parallelized, then compute resources (CPU and memory) has to be chosen based on the desired latency value. Adding more instances of the services (horizontal scaling) will not have any positive influence on the latency in this case.
Adding more instances of the service increases throughput allowing to process more requests in parallel (if there are no bottlenecks).
In other words, allocate CPU and memory resources so that service has desired response time and add more service instances (scale horizontally) to handle more requests in parallel.