Generate codes including unquote-splice by a loop in Common Lisp - macros

I'm writing a macro to generate codes used by another macro in Common Lisp. But I'm new at this and have difficulty in constructing a macro that takes in a list (bar1 bar2 ... barn) and produces the following codes by a loop.
`(foo
,#bar1
,#bar2
...
,#barn)
I wonder whether this can be achieved not involving implement-dependent words such as SB-IMPL::UNQUOTE-SPLICE in sbcl.
Maybe I didn't give a clear description about my problem. In fact I want to write a macro gen-case such that
(gen-case
(simple-array simple-vector)
('(dotimes ($1 $5)
(when (and (= (aref $4 $2 $1) 1) (zerop (aref $3 $1)))
$0))
'(dolist ($1 (aref $4 $2))
(when (zerop (aref $3 $1))
$0)))
objname body)
produces something like
`(case (car (type-of ,objname))
(simple-array
,#(progn
(setf temp
'(dotimes ($1 $5)
(when (and (= (aref $4 $2 $1) 1) (zerop (aref $3 $1)))
$0)))
(code-gen body)))
(simple-vector
,#(progn
(setf temp
'(dolist ($1 (aref $4 $2))
(when (zerop (aref $3 $1))
$0)))
(code-gen body))))
In general cases, the lists taken in by gen-case may contain more than two items.
I have tried
``(case (car (type-of ,,objname))
,',#(#|Some codes that produce target codes|#))
but the target codes are inserted to the quote block and thus throw an exception in the macro who calls the macro gen-case. Moreover, I have no way to insert ,# to the target codes as a straightforward insertion will cause a "comma not inside a backquote" exception.
The codes generated are part of another macro
(defmacro DSI-Layer ((obj-name tag-name) &body body)
"Data Structure Independent Layer."
(let ((temp))
(defun code-gen (c)
(if (atom c) c
(if (eq (car c) tag-name)
(let ((args (cadr c)) (codes (code-gen (cddr c))) (flag nil))
(defun gen-code (c)
(if (atom c) c
(if (eq (car c) *arg*)
(let ((n (cadr c)))
(if (zerop n) (progn (setf flag t) codes)
(nth (1- n) args)))
(let ((h (gen-code (car c))))
(if flag
(progn
(setf flag nil)
(append h (gen-code (cdr c))))
(cons h (gen-code (cdr c))))))))
(gen-code temp))
(cons (code-gen (car c)) (code-gen (cdr c))))))
`(case (car (type-of ,obj-name))
(simple-array
,#(progn
(setf temp
'(dotimes ($1 $5)
(when (and (= (aref $4 $2 $1) 1) (zerop (aref $3 $1)))
$0)))
(code-gen body)))
(simple-vector
,#(progn
(setf temp
'(dolist ($1 (aref $4 $2))
(when (zerop (aref $3 $1))
$0)))
(code-gen body))))))
and I've set up a read-macro
(defvar *arg* (make-symbol "ARG"))
(set-macro-character #\$
#'(lambda (stream char)
(declare (ignore char))
(list *arg* (read stream t nil t))))
The intention of DSI-Layer is to add a piece of code to determine the type of input parameters. For example, the codes
(defun BFS (G v)
(let* ((n (car (array-dimensions G)))
(visited (make-array n :initial-element 0))
(queue (list v))
(vl nil))
(incf (aref visited v))
(DSI-Layer (G next-vertex)
(do nil ((null queue) nil)
(setf v (pop queue)) (push v vl)
(next-vertex (i v visited G n)
(setf queue (nconc queue (list i)))
(incf (aref visited i)))))
vl))
will be converted to
(defun BFS (G v)
(let* ((n (car (array-dimensions G)))
(visited (make-array n :initial-element 0))
(queue (list v))
(vl nil))
(incf (aref visited v))
(case (car (type-of G))
(simple-array
(do nil ((null queue) nil)
(setf v (pop queue))
(push v vl)
(dotimes (i n)
(when (and (= (aref G v i) 1) (zerop (aref visited i)))
(setf queue (nconc queue (list i)))
(incf (aref visited i))))))
(simple-vector
(do nil ((null queue) nil)
(setf v (pop queue))
(push v vl)
(dolist (i (aref G v))
(when (zerop (aref visited i))
(setf queue (nconc queue (list i)))
(incf (aref visited i)))))))))
Now I just wonder that whether the DSI-Layer can be generated from another macro gen-case by passing the type names and corresponding code templates to it or not.
By the way, I don't think the specific meaning of generated codes matters in my problem. They are just treated as data.

Don't be tempted to use internal details of backquote. If you have the lists you want to append in distinct variables, simply append them:
`(foo
,#(append b1 b2 ... bn))
If you have a list of them in some single variable (for instance if they've come from an &rest or &body argument) then do something like
`(foo
,#(loop for b in bs
appending b))

I see your problem - you need it not for a function call
but for a macro-call with case.
One cannot use dynamically macros - in a safe way.
One has to use eval but it is not safe for scoping.
#tfb as well as me answered in this question for type-case
lengthily.
previous answer (wrong for this case)
No need for a macro.
`(foo
,#bar1
,#bar2
...
,#barn)
with evaluation of its result
by pure functions would be:
(apply foo (loop for bar in '(bar1 bar2 ... barn)
nconc bar))
nconc or nconcing instead of collect fuses lists together and is very useful in loop. - Ah I see my previous answerer used append btw appending - nconc nconcing however is the "destructive" form of "append". Since the local variable bar is destructed here which we don't need outside of the loop form, using the "destructive" form is safe here - and comes with a performance advantage (less elements are copied than when using append). That is why I wired my brain always to use nconc instead of append inside a loop.
Of course, if you want to get the code construct, one could do
`(foo ,#(loop for bar in list-of-lists
nconc bar))
Try it out:
`(foo ,#(loop for bar in '((1 2 3) (a b c) (:a :b :c)) nconc bar))
;; => (FOO 1 2 3 A B C :A :B :C)

The answers of all of you inspired me, and I came up with a solution to my problem. The macro
(defmacro Layer-Generator (obj-name tag-name callback body)
(let ((temp (gensym)) (code-gen (gensym)))
`(let ((,temp))
(defun ,code-gen (c)
(if (atom c) c
(if (eq (car c) ,tag-name)
(let ((args (cadr c)) (codes (,code-gen (cddr c))) (flag nil))
(defun gen-code (c)
(if (atom c) c
(if (eq (car c) *arg*)
(let ((n (cadr c)))
(if (zerop n) (progn (setf flag t) codes)
(nth (1- n) args)))
(let ((h (gen-code (car c))))
(if flag
(progn
(setf flag nil)
(append h (gen-code (cdr c))))
(cons h (gen-code (cdr c))))))))
(gen-code ,temp))
(cons (,code-gen (car c)) (,code-gen (cdr c))))))
(list 'case `(car (type-of ,,obj-name))
,#(let ((codes nil))
(dolist (item callback)
(push
`(cons ',(car item)
(progn
(setf ,temp ,(cadr item))
(,code-gen ,body)))
codes))
(nreverse codes))))))
produces codes which are not the same as DSI-Layer but produce codes coincident with what the latter produces. Because the codes
`(case (car (type-of ,obj-name))
(tag1
,#(#|codes1|#))
(tag2
,#(#|codes2|#))
...)
are equivalent to
(list 'case `(car (type-of ,obj-name))
(cons 'tag1 (#|codes1|#))
(cons 'tag2 (#|codes2|#))
...)
And now we can use a loop to generate it just as what the Layer-Generator does.

Related

Did anybody write when-let-cond?

I was thinking about a cond with a twist
(let ((a 0))
(let* ((result nil))
(tagbody
(let ((b1 (+ 0 a)))
(when (eq b1 1)
(print "1")
(setf result b1)
(go finish)))
(let ((b2 (+ 0 a)))
(when (eq b2 2)
(print "2")
(setf result b2)
(go finish)))
(when T
(print "else")
(setf result a))
(format t "=== ~A~%" a)
finish)
result))
where when test-form is wrapped in let. On one hand this seems to fit into a problem I am working on, but also seems overcomplicated. Can it be simplified with a macro? What would be the best way to simplify it if I had lots of test-forms?
Part of the problem in trying to do it that way is restricting the let blocks to only one test-form and its body.
But I wonder if I am going down the wrong path. Playing with an imaginary variant of when-let suggests there is no benefit of going down this path.
Trying cond
The version using cond appears to be more compact.
(let ((a 3))
(let* ((b1 (+ 0 a))
(b2 (+ 0 a)))
(cond
((eq b1 1)
(print "1")
b1)
((eq b2 2)
(print "2")
b2)
(T (print "else")
a))))
All boils down to the variables defined in the let* which in real life example would be used to avoid calculating the same value twice and improve readability. What should I do?
I'd prefer to think more in terms of blocks and returning values from them, instead working with goto and variables. If one really needs separate let-bound variables and their own scope:
(prog ((a 0))
(let ((b1 (+ 0 a)))
(when (eql b1 1)
(print "1")
(return b1)))
(let ((b2 (+ 0 a)))
(when (eql b2 2)
(print "2")
(return b2)))
(return
(progn
(print "else")
(return a))))
Somebody did now. I wanted it to be compatible with cond which raises a trouble: if you want the binding clauses to be like
(cond/binding
...
((var expr) <use var>)
...)
But you want to allow just general test clauses, then a function with one argument is ambiguous: should
(cond/binding
...
((car x) ...)
...)
call car or bind car? To make this work then you need to bind a useless variable in that case:
(cond/binding
...
((useless (car x)) <useless not used here>)
...)
And that means you either need to insert ignore or ignorable declarations all over the place, or live with compiler warnings.
So, well, I decided it would be better to go the other way: you have to say when you want to bind a variable. And you do that by a clause like:
(cond/binding
...
((bind var expr) <var is bound here>)
...)
And note that bind is magic in the syntax (so this means you can't call a function called bind, but that's OK as I already use bind as a keyword in other macros.
The macro also tries hard (well, hard given I basically just typed it in and it's had no testing) to actually behave like cond: returning multiple values, for instance.
So this:
(cond/binding
((f x y z) t)
((bind x 3) (print x) (values x t))
(t (values nil nil))
(1))
expands to
(block #:cond/binding
(when (f x y z)
(return-from #:cond/binding (progn t)))
(let ((x 3))
(when x
(return-from #:cond/binding
(progn (print x) (values x t)))))
(when t
(return-from #:cond/binding (progn (values nil nil))))
(let ((r 1))
(when r
(return-from #:cond/binding r))))
(where all the blocks are the same block).
So, here:
(defmacro cond/binding (&body clauses)
;; Like COND but it can bind variables. All clauses are (should be)
;; like COND, except that a clause of the form ((bind var <expr>)
;; ...) will bind a variable. Note that bind has to be literally
;; the symbol BIND: it's magic in the syntax.
(let ((bn (make-symbol "COND/BINDING")))
`(block ,bn
,#(mapcar
(lambda (clause)
(unless (consp clause)
(error "bad clause ~S" clause))
(case (length clause)
(1
`(let ((r ,(car clause)))
(when r (return-from ,bn r))))
(otherwise
(destructuring-bind (test/binding &body forms) clause
(typecase test/binding
(cons
(case (car test/binding)
((bind)
(unless (and (= (length test/binding) 3)
(symbolp (second test/binding)))
(error "bad binding clause ~S" test/binding))
(destructuring-bind (var expr) (rest test/binding)
`(let ((,var ,expr))
(when ,var
(return-from ,bn
(progn ,#forms))))))
(otherwise
`(when ,test/binding
(return-from ,bn
(progn ,#forms))))))
(t
`(when ,test/binding
(return-from ,bn
(progn ,#forms)))))))))
clauses))))
Caveat emptor.
If I understand you problem correctly, then you can use or and rely on the fact that when is evaluated to nil if the condition is not true, e.g.,
(defun example (a)
(or
(let ((b1 (+ 0 a)))
(when (eql b1 1)
(print "1")
b1))
(let ((b2 (+ 0 a)))
(when (eql b2 2)
(print "2")
b2))
(progn
(print "else")
a)))
Using macrolet is the best solution so far. That allows me to bypass the limitations of when-let and not all bindins in the let form have to evaluate to true.
(let ((a 3))
(let ((result nil))
(macrolet ((ret-go (res)
`(progn
(setf result ,res)
(go finish))))
(tagbody
(let ((b1 (+ 0 a)))
(when (eq b1 1)
(print "1")
(ret-go b1)))
(let ((b2 (+ 0 a)))
(when (eq b2 2)
(print "2")
(ret-go b2)))
(when T
(print "else")
(setf result a))
(format t "=== ~A~%" a)
finish)
result)))

Count occurrences in lisp

I'm trying to make a code in lisp to count occurrences of atoms in a list in lisp.
The problem is the code works for all atoms except the atom (), which appears as NIL.
Example in the code:
(defun flatten (list_)
(cond ((atom list_) (list list_))
((null list_) NIL)
(t (append (flatten (car list_)) (flatten (cdr list_))) )
)
)
(defun toUniqueList (list_ out)
(cond ((null list_) NIL)
((not (member (car list_) out)) (append (list (car list_)) (toUniqueList (cdr list_) (append (list (car list_)) out)) ))
(t (toUniqueList (cdr list_) out))
)
)
(defun countOccurences (list_ x)
(cond ((null list_) 0)
((eql (car list_) x) (+ (countOccurences (cdr list_) x) 1))
(t (countOccurences (cdr list_) x))
)
)
(defun countOccurencesAll (list_)
(setq flatList (flatten list_))
(setq parsed (toUniqueList flatList '()))
(setq result '())
(dolist (x parsed)
(setq result (append result (list (list x (countOccurences flatList x)) ))))
result
)
(write (countOccurencesAll '(x y z 4.6 (a x) () (5 z x) ())))
; ((X 3) (Y 1) (Z 2) (4.6 1) (A 1) (NIL 5) (5 1))
Any idea in how to show () rather than NIL?
The expressions nil, 'nil, (), and '() all gets evaluated to nil which is displayed as nil unless it is the cdr of a pair in which it will just close the list. eg. '(() . ()) gets evaluated to (NIL . NIL) and it is displayed as (NIL). There is nothing you can do about that.
So the question is then, because ((a) (()) (c)) is really ((a . nil) . ((nil . nil) . ((c . nil) . nil))) should it count nil/() 5 times or ignore when nil in the cdr of a pair and just count it as one?
BTW using setq in countOccurencesAll on undefined bindings means your code is in the mercy of the implementation. The hyperspec does not define how it should be handled and SBCL makes warnings about how it interprets the code and other might just choose an interpretation. A better approach would be to use let to define the bindings. Using a hash and iterate over the list once would make an O(n) solution.

Scheme; Error Holes in a Macro List

So for a college assignment we've been asked to work with macros and I'm finding it hard to understand how to implement code in scheme (we went from reversing a string to building an interpreter in one lecture).
(define macro-alist
`((and ,(λ (e)
(let ((forms (cdr e)))
(cond ((null? forms) '#t)
((null? (cdr forms)) (car forms))
(else `(if ,(car forms) (and ,#(cdr forms)) #f))))))
;(or ,error)
;(let ,error)
;(cond ,error)
(if ,(λ (e) (let ((guard (cadr e))
(then-part (caddr e))
(else-part (cadddr e)))
`((%if ,guard (λ () ,then-part) (λ () ,else-part))))))
))
We were asked to 'fill in the error holds in macro-alist' for the weekend and I'm finding it difficult.
I found some resources and combining them with my own brief knowledge I have :
`((or ,(lambda (e)
(and (list-strictly-longer-than? e 0)
(equal? (list-ref e 0) 'or)
(letrec ([visit (lambda (i)
(if(null? i)
#t
(and (is-exression? (car i))
(visit (cdr i)))))])
(visit (cdr e)))))))
`((let ,(lambda (e)
(and (proper-list-of-given-length? e 3)
(equal? (car e) 'let)
(list? (cadr e))
(is-expression? (list-ref e 2))
(lectrec ([visit (trace-lambda visit (i a)
(if(null? i)
#t
(and (proper-list-of-given-length? (car i) 2)
(is-identifier? (caar i))
(is-expression? (cadar i))
(not (member (caar i) a))
(visit (cdr i) (cons (caar i) a)))))])
(visit (cadr e) '()))))))
`((cond ,(lambda (e)
(and (list-strictly-longer-than? e 1)
(equal? (car v) 'cond)
(lectrec ([visit (lambda (i)
(if (null? (cdr i))
(is-else-clause? (car i))
(if (pair? (cdr i))
(and (cond? (car i))
(visit (cdr i))))))])
(visit (cdr e)))))))
For or, let and cond. I'm wondering if these are correct or if I'm close. I don't understand much about macros or scheme in general so some information/help on what to do would be appreciated.
If you look at the implementation of and:
(define expand-and
(λ (e)
(let ((forms (cdr e)))
(cond ((null? forms) '#t)
((null? (cdr forms)) (car forms))
(else `(if ,(car forms) (and ,#(cdr forms)) #f))))))
(expand-and '(and)) ; ==> #t
(expand-and '(and a)) ; ==> a
(expand-and '(and a b)) ; ==> (if a (and b) #f)
I notice two things. It doesn't really double check that the first element is and or if it's a list. Perhaps the interpreter doesn't use this unless it has checked this already?
Secondly it doesn't seem like you need to expand everything. As you see you might end up with some code + and with fewer arguments. No need for recursion since the evaluator will do that for you.
I think you are overthinking it. For or it should be very similar:
(expand-or '(or)) ; ==> #f
(expand-and '(or a b c)) ; ==> (let ((unique-var a)) (if unique-var unique-var (or b c)))
The let binding prevents double evaluation of a but if you have no side effects you might just rewrite it to (if a a (or b)). As with and or might expand to use or with fewer arguments than the original. This trick you can do with cond as well:
(cond (a b c)
...) ; ==>
(if a
(begin b c)
(cond ...))
let does not need this since it's perhaps the simplest one if you grasp map:
(let ((a x) (c y))
body ...) ; ==>
((lambda (a c) body ...) x y)
The report has examples of how the macros for these are made, but they might not be the simplest to rewrite to functions that takes code as structure like your interpeter. However using the report to understand the forms would perhaps worked just as well as posting a question here on SO.

Macros That Write Macros - Compile Error

When I compile the following code, SBCL complains that g!-unit-value and g!-unit are undefined. I'm not sure how to debug this. As far as I can tell, flatten is failing.
When flatten reaches the unquoted part of defunits, it seems like the entire part is being treated as an atom. Does that sound correct?
The following uses code from the book Let over Lambda:
Paul Graham Utilities
(defun symb (&rest args)
(values (intern (apply #'mkstr args))))
(defun mkstr (&rest args)
(with-output-to-string (s)
(dolist (a args) (princ a s))))
(defun group (source n)
(if (zerop n) (error "zero length"))
(labels ((rec (source acc)
(let ((rest (nthcdr n source)))
(if (consp rest)
(rec rest (cons (subseq source 0 n) acc))
(nreverse (cons source acc))))))
(if source (rec source nil) nil)))
(defun flatten (x)
(labels ((rec (x acc)
(cond ((null x) acc)
((atom x) (cons x acc))
(t (rec (car x) (rec (cdr x) acc))))))
(rec x nil)))
Let Over Lambda Utilities - Chapter 3
(defmacro defmacro/g! (name args &rest body)
(let ((g!-symbols (remove-duplicates
(remove-if-not #'g!-symbol-p
(flatten body)))))
`(defmacro ,name ,args
(let ,(mapcar
(lambda (g!-symbol)
`(,g!-symbol (gensym ,(subseq
(symbol-name g!-symbol)
2))))
g!-symbols)
,#body))))
(defun g!-symbol-p (symbol-to-test)
(and (symbolp symbol-to-test)
(> (length (symbol-name symbol-to-test)) 2)
(string= (symbol-name symbol-to-test)
"G!"
:start1 0
:end1 2)))
(defmacro defmacro! (name args &rest body)
(let* ((o!-symbols (remove-if-not #'o!-symbol-p args))
(g!-symbols (mapcar #'o!-symbol-to-g!-symbol o!-symbols)))
`(defmacro/g! ,name ,args
`(let ,(mapcar #'list (list ,#g!-symbols) (list ,#o!-symbols))
,(progn ,#body)))))
(defun o!-symbol-p (symbol-to-test)
(and (symbolp symbol-to-test)
(> (length (symbol-name symbol-to-test)) 2)
(string= (symbol-name symbol-to-test)
"O!"
:start1 0
:end1 2)))
(defun o!-symbol-to-g!-symbol (o!-symbol)
(symb "G!" (subseq (symbol-name o!-symbol) 2)))
Let Over Lambda - Chapter 5
(defun defunits-chaining (u units prev)
(if (member u prev)
(error "~{ ~a~^ depends on~}"
(cons u prev)))
(let ((spec (find u units :key #'car)))
(if (null spec)
(error "Unknown unit ~a" u)
(let ((chain (second spec)))
(if (listp chain)
(* (car chain)
(defunits-chaining
(second chain)
units
(cons u prev)))
chain)))))
(defmacro! defunits (quantity base-unit &rest units)
`(defmacro ,(symb 'unit-of- quantity)
(,g!-unit-value ,g!-unit)
`(* ,,g!-unit-value
,(case ,g!-unit
((,base-unit) 1)
,#(mapcar (lambda (x)
`((,(car x))
,(defunits-chaining
(car x)
(cons
`(,base-unit 1)
(group units 2))
nil)))
(group units 2))))))
This is kind of tricky:
Problem: you assume that backquote/comma expressions are plain lists.
You need to ask yourself this question:
What is the representation of a backquote/comma expression?
Is it a list?
Actually the full representation is unspecified. See here: CLHS: Section 2.4.6.1 Notes about Backquote
We are using SBCL. See this:
* (setf *print-pretty* nil)
NIL
* '`(a ,b)
(SB-INT:QUASIQUOTE (A #S(SB-IMPL::COMMA :EXPR B :KIND 0)))
So a comma expression is represented by a structure of type SB-IMPL::COMMA. The SBCL developers thought that this representation helps when such backquote lists need to be printed by the pretty printer.
Since your flatten treats structures as atoms, it won't look inside...
But this is the specific representation of SBCL. Clozure CL does something else and LispWorks again does something else.
Clozure CL:
? '`(a ,b)
(LIST* 'A (LIST B))
LispWorks:
CL-USER 87 > '`(a ,b)
(SYSTEM::BQ-LIST (QUOTE A) B)
Debugging
Since you found out that somehow flatten was involved, the next debugging steps are:
First: trace the function flatten and see with which data it is called and what it returns.
Since we are not sure what the data actually is, one can INSPECT it.
A debugging example using SBCL:
* (defun flatten (x)
(inspect x)
(labels ((rec (x acc)
(cond ((null x) acc)
((atom x) (cons x acc))
(t (rec (car x) (rec (cdr x) acc))))))
(rec x nil)))
STYLE-WARNING: redefining COMMON-LISP-USER::FLATTEN in DEFUN
FLATTEN
Above calls INSPECT on the argument data. In Common Lisp, the Inspector usually is something where one can interactively inspect data structures.
As an example we are calling flatten with a backquote expression:
* (flatten '`(a ,b))
The object is a proper list of length 2.
0. 0: SB-INT:QUASIQUOTE
1. 1: (A ,B)
We are in the interactive Inspector. The commands now available:
> help
help for INSPECT:
Q, E - Quit the inspector.
<integer> - Inspect the numbered slot.
R - Redisplay current inspected object.
U - Move upward/backward to previous inspected object.
?, H, Help - Show this help.
<other> - Evaluate the input as an expression.
Within the inspector, the special variable SB-EXT:*INSPECTED* is bound
to the current inspected object, so that it can be referred to in
evaluated expressions.
So the command 1 walks into the data structure, here a list.
> 1
The object is a proper list of length 2.
0. 0: A
1. 1: ,B
Walk in further:
> 1
The object is a STRUCTURE-OBJECT of type SB-IMPL::COMMA.
0. EXPR: B
1. KIND: 0
Here the Inspector tells us that the object is a structure of a certain type. That's what we wanted to know.
We now leave the Inspector using the command q and the flatten function continues and returns a value:
> q
(SB-INT:QUASIQUOTE A ,B)
For anyone else who is trying to get defmacro! to work on SBCL, a temporary solution to this problem is to grope inside the unquote structure during the flatten procedure recursively flatten its contents:
(defun flatten (x)
(labels ((flatten-recursively (x flattening-list)
(cond ((null x) flattening-list)
((eq (type-of x) 'SB-IMPL::COMMA) (flatten-recursively (sb-impl::comma-expr x) flattening-list))
((atom x) (cons x flattening-list))
(t (flatten-recursively (car x) (flatten-recursively (cdr x) flattening-list))))))
(flatten-recursively x nil)))
But this is horribly platform dependant. If I find a better way, I'll post it.
In case anyone's still interested in this one, here are my three cents. My objection to the above modification of flatten is that it might be more naturally useful as it were originally, while the problem with representations of unquote is rather endemic to defmacro/g!. I came up with a not-too-pretty modification of defmacro/g! using features to decide what to do. Namely, when dealing with non-SBCL implementations (#-sbcl) we proceed as before, while in the case of SBCL (#+sbcl) we dig into the sb-impl::comma structure, use its expr attribute when necessary and use equalp in remove-duplicates, as we are now dealing with structures, not symbols. Here's the code:
(defmacro defmacro/g! (name args &rest body)
(let ((syms (remove-duplicates
(remove-if-not #-sbcl #'g!-symbol-p
#+sbcl #'(lambda (s)
(and (sb-impl::comma-p s)
(g!-symbol-p (sb-impl::comma-expr s))))
(flatten body))
:test #-sbcl #'eql #+sbcl #'equalp)))
`(defmacro ,name ,args
(let ,(mapcar
(lambda (s)
`(#-sbcl ,s #+sbcl ,(sb-impl::comma-expr s)
(gensym ,(subseq
#-sbcl
(symbol-name s)
#+sbcl
(symbol-name (sb-impl::comma-expr s))
2))))
syms)
,#body))))
It works with SBCL. I have yet to test it thoroughly on other implementations.

stable-union lisp

Need to write a union function in lisp that takes two lists as arguments and returns a list that is the union of the two with no repeats. Order should be consistent with those of the input lists
For example: if inputs are '(a b c) and '(e c d) the result should be '(a b c e d)
Here is what I have so far
(defun stable-union (x y)
(cond
((null x) y)
((null y) x))
(do ((i y (cdr i))
(lst3 x (append lst3
(cond
((listp i)
((null (member (car i) lst3)) (cons (car i) nil) nil))
(t (null (member i lst3)) (cons i nil) nil)))))
((null (cdr i)) lst3)))
My error is that there is an "illegal function object" with the segment (null (member (car i) lst3))
Advice?
You've got your parens all jumbled-up:
(defun stable-union (x y)
(cond
((null x) y)
((null y) x) ) END OF COND form - has no effect
(do ((i y (cdr i))
^^
(lst3 x (append lst3
(cond
((listp i)
( (null (member (car i) lst3))
^^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ called as a function
(cons (car i) nil) with two arguments
nil ) )
^^
(t NEXT 3 forms have no effect
(null (member i lst3))
(cons i nil)
nil )))) )
^^
((null (cdr i)) lst3)))
Here's your code as you probably intended it to be, with corrected parenthesization and some ifs added where needed:
(defun stable-union (x y)
(cond
((null x) y)
((null y) x)
(t
(do ((i y (cdr i))
(lst3 x (append lst3
(cond
((listp i)
(if (null (member (car i) lst3))
(cons (car i) nil)
nil))
(t
(if (null (member i lst3))
(cons i nil)
nil))))))
((null (cdr i)) lst3)))))
There are still problems with this code. Your do logic is wrong, it skips the first element in y if it contains just one element. And you call append all the time whether it is needed or not. Note that calling (append lst3 nil) makes a copy of top-level cons cells in lst3, entirely superfluously.
Such long statements as you have there are usually placed in do body, not inside the update form for do's local variable.
But you can use more specialized forms of do, where appropriate. Here it is natural to use dolist. Following "wvxvw"'s lead on using hash-tables for membership testing, we write:
(defun stable-union (a b &aux (z (list nil)))
(let ((h (make-hash-table))
(p z))
(dolist (i a)
(unless (gethash i h)
(setf (cdr p) (list i) p (cdr p))
(setf (gethash i h) t)))
(dolist (i b (cdr z))
(unless (gethash i h)
(setf (cdr p) (list i) p (cdr p))
(setf (gethash i h) t)))))
using a technique which I call "head-sentinel" (z variable pre-initialized to a singleton list) allows for a great simplification of the code for the top-down list building at a cost of allocating one extra cons cell.
The error is because you're trying to execute the result of evaluating (null (member (car i) lst3)). In your cond expression, if i is a list, then it attempts to evaluate the expression
((null (member (car i) lst3)) (cons (car i) nil) nil))
And return the result. The first element in an expression should be a function, but
(null (member (car i) lst3))
Is going to return a boolean value. Hence the failure. The structure of your code needs some attention. What you've missed is that you need an inner cond, there.
Incidentally, this would be a much cleaner function if you did it recursively.
I'm a Schemer rather than a Lisper, but I had a little think about it. Here's the skeleton of a recursive implementation:
(defun stable-union (x y)
(cond
((null x) y)
((null y) x)
((listp y)
(cond
((member (car y) x) (stable-union ??? (???)))
(t (stable-union (append x (??? (???))) (cdr y)))))
((not (member y x)) (append x (list y)))
(t x)))
(Edited to correct simple tyop in second-last line, thanks to Will Ness for spotting it)
(remove-duplicates (append '(a b c) '(e c d)) :from-end t)
Because you started off with do, and because a recursive solution would be even worse, here's what you could've done:
(defun union-stable (list-a list-b)
(do ((i list-b (cdr i))
filtered back-ref)
((null i) (append list-a back-ref))
(unless (member (car i) list-a)
(if back-ref
(setf (cdr filtered) (list (car i))
filtered (cdr filtered))
(setf back-ref (list (car i))
filtered back-ref)))))
This is still quadratic time, and the behaviour is such that if the first list has duplicates, or the second list has duplicates, which are not in the first list - they will stay. I'm not sure how fair it is to call this function a "union", but you'd have to define what to do with the lists if they have duplicates before you try to unify them.
And this is what you might've done if you were interested in the result, rather than just exercising. Note that it will ensure that elements are unique, even if the elements repeat in the input lists.
(defun union-stable-hash (list-a list-b)
(loop for c = (car (if list-a list-a list-b))
with back-ref
with hash = (make-hash-table)
for key = (gethash c hash)
with result
do (unless key
(if back-ref
(setf (cdr result) (list c)
result (cdr result))
(when (or list-a list-b)
(setf back-ref (list c)
result back-ref)))
(setf (gethash c hash) t))
do (if list-a (setf list-a (cdr list-a))
(setf list-b (cdr list-b)))
do (unless (or list-a list-b)
(return back-ref))))