How can I use the setter of a private instance variable from the default constructor in Dart?
Given the example class:
class A {
String name;
int _age;
int get age => _age;
set age(age) {
_age = age ?? 0;
}
A(this.name, this._age);
}
How can I use this constructor to go through the set age() function? Is there away aside from using a factory? I'd like to do something like this
A(this.name, newAge): age = newAge;
But I get an error forcing me to only set instance variables from the constructor, which has me just duplicating the setter:
A(this.name, newAge): _age = newAge ?? 0;
Am I missing something or is this just not possible with dart?
The initialization list of a constructor can be used only to initialize members (or call base class constructors). (Additionally, when the initialization list is executed, this isn't valid yet, so you can't access any members.)
If you want to do other kinds of initialization work, you can do it in the constructor body instead, at which point the object is considered to be sufficiently constructed for this to be valid:
A(this.name, int newAge) {
age = newAge;
}
Also see:
Difference between assigning the values in parameter list and initialiser list, which explains why this becomes valid only for the later stages of object initialization.
https://stackoverflow.com/a/64548861/ for various differences between the different ways to initialize members and for an example where the different ways matter.
Related
I'm a beginner learning dart from the book dart apprentice and I reached where they were discussing constructors in dart classes, the book was implying that constructors create instances of the class which I understood but I needed more info about constructors. So I googled and some results repeated what was already in the book about it being used to create instances of a class while others also showed that it's used to instantiate class properties, but my problem is with the other answer which I found that they are used to instantiate properties of a class, but my question is: I instantiate all class properties when I create the class by declaring the property variables, like this:
class UserClass{
userClassProperty = "";
anotherUserClassProperty = ""; }
why is the constructor also needed to instantiate class properties?
Often, values are unique to every class instance.
Consider the following example:
class Point {
final int x;
final int y;
const Point(this.x, this.y);
double get distanceToOrigin => sqrt(x * x + y * y);
}
If the x and y values were defined inside the class, it would be pretty useless. Instead, different Point objects can be instantiated with different values, which means the same code can be used for different situations.
Ok, so constructors instantiate or start a class by collecting all the data the class needs to start to start working. Constructors are so important that the dart compiler provides one even if you don't explicitly create one. For example, you create a class for mammals like this :
class Mammal{
String name = "cat";
int numberOfLegs = 2;
}
Although you don't explicitly add a constructor the dart compiler adds a default constructor like this :
class Mammal{
Mammal(); //This is added by dart during the class instantiation by default.
String name = "cat";
int numberOfLegs = 2;
}
Yeah, that's how crucial constructors are to the dart compiler.
And on the topic of why are they necessary even when you declare all the properties by yourself in the class, as hacker1024 said it would make the class pretty useless, as the point of the existence of classes is to create variants but with different properties. Not adding a constructor to your class and defining all the properties in the class would mean that your class doesn't take property arguments which in turn also means that different variants of your class can't be created. Again this goes directly against the point of the existence of dart classes. For example, you have a class like this :
class Mammals{
Strig name = "Human";
int numberOfLegs = 2;
bool hasFur = false;
}
final cat = Mammal();
final human = Mammal();
print(cat.numberOfLegs); //Prints 2
//2
print(human.numberOfLegs); //Also prints 2
//2
print(cat.hasFur);
// false
Yeah, this class is problematic. Cats with 2 legs? You would agree with me that that's not how things are in reality. And also the class is pretty useless in the sense that it's not modular, no matter which kind of mammal we create be it a cat, a sheep or even a cow the name property is going to be the default one we set, that is "Human". When we create a class to simulate mammals we want to be able to define what kind of properties it has, not use some fixed values. So you want to create a class which has a constructor like this :
class Mammals{
Mammals(String name,int noOfLegs, bool hasFur){
this.name = name;
this.noOfLegs = noOfLegs;
this.hasFur = hasFur;
}
String name = "";
int noOfLegs = 0;
bool hasFur = False;
}
final cat = Mammal("Cat", 4, True); //Now you can pass in the properties ou want.
final human = Mammal("Human", 2, false);
print(cat.name); //This prints the customized name of the object cat instead of some fixed value
//Cat
print(human.name); //This prints the customized name of the object human
Now we have two instances of the class with separate property values.
Although this adds a little more code, the modularity benefit is worth it.
Why does this code:
class _SequentialTextPageState {
String jsonTextPref = 'seqtext';
int jsonTextSuff = 10;
String jsonText = jsonTextPref + jsonTextSuff.toString();
}
generate these errors?
Error: The instance member 'jsonTextPref' can't be accessed in an initializer.
Error: The instance member 'jsonTextSuff' can't be accessed in an initializer.
It seems to me that concatenation between String and int is correct?
Dart initializes objects in multiple phases. Initializing members directly ("field initializers") occurs early in object initialization, before this becomes valid, so that phase cannot initialize members that depend on other parts of the object.
Dart provides multiple ways to initialize members, so if one member needs to depend on another, you can initialize it in a later phase by using a different mechanism. For example, you could do one of:
Add the late keyword to make the dependent member lazily initialized.
Move initialization of the dependent member into the constructor body.
In the case of a Flutter State subtype, you could initialize the dependent member in its initState method, which in some cases is more appropriate.
Note that in some cases you additionally can consider replacing the member variable with a read-only getter instead. For example, in your case, perhaps you could use:
String get jsonText => jsonTextPref + jsonTextSuff.toString();
That would be appropriate if jsonText should always depend on jsonTextPref and jsonTextSuff, would never need to have an independent value, and if it's acceptable for jsonText to return a new object every time it's accessed.
Dart does not allow field initializers to refer to the object itself. Fields must always be fully initialized before any access is given to the object begin created.
The initializers can only access static and top-level variables, not any instance variables on the object itself.
With null safety, you will be allowed to write late String jsonText = this.something + this.other;. That field will then not be initialized until it's first read or written, which is necessarily after the object itself has been created.
You can only use constant expressions as initializers. x=this.y is not constant.
The error was displayed when I did following:
class MyClass {
String id;
String[] imagePaths;
}
It will mark the String in the line String id; as error, but the error is in the next line, it should be List<String> imagePaths; instead of String[] imagePaths; then the error in the line above also disappears. This can be very confusing if you have a big class and the actual error is many lines underneath the first marked line (talking from experience...)
I am struggling with the concept of getters and setters in Dart, and the more I read, the more I cannot grasp the underlying purpose. Take for example the following code:
main() {
Car car = new Car();
car.doors = 44;
print(car.doors); // 44
}
class Car {
int doors = 4;
}
Later, I decide to make “doors” a private variable, so I do the following:
main() {
Car car = new Car();
car.doors = 44;
print(car.doors); // 44
}
class Car {
int _doors = 4;
int get doors => _doors;
set doors(int numberOfDoors) => _doors = numberOfDoors;
}
According to the code, _doors is now a private variable, and so I cannot access it in main(). However, by manipulating doors, I can indirectly change the value of _doors, which is what I thought I wanted to prevent in the first place by making it a private variable. So what is the purpose of making a previously public variable into a private one, if you can still indirectly manipulate it? And, how are getters and setters even working to change the properties of these variables? I am trying to understand the fundamental concept, because without that, I don't understand how or why getters and setters are used.
Instance variables in Dart have implicit getters and setters. So for your example code, it will operate in exactly the same way, since all you have done is changed from an implicit getter and setter to an explicit getter and setter.
The value of explicit getters and setters is that you don't need to define both if you don't want. For instance we can change your example to only define a getter:
main() {
Car car = new Car();
print(car.doors); // 4
car.doors = 6; // Won't work since no doors setter is defined
}
class Car {
int _doors = 4;
int get doors => _doors;
}
Additionally, you can also add extra logic in a getter or setter that you don't get in an implicit getter or setter:
class Car {
int _doors = 4;
int get doors => _doors;
set doors(int numberOfDoors) {
if(numberOfDoors >= 2 && numberOfDoors <= 6) {
_doors = numberOfDoors;
}
}
}
The getter and setter functions allow us to make the class appear to have a property, without a explicit property being declared (_doors in your case). The property value may be calculated from other properties.
The getters and setters allow us to execute arbitrary code when the property is get or set.
Omitting a setter makes the property immutable.
An abstract class may declare getters and setters without bodies as part of a required class interface.
Why does this code:
class _SequentialTextPageState {
String jsonTextPref = 'seqtext';
int jsonTextSuff = 10;
String jsonText = jsonTextPref + jsonTextSuff.toString();
}
generate these errors?
Error: The instance member 'jsonTextPref' can't be accessed in an initializer.
Error: The instance member 'jsonTextSuff' can't be accessed in an initializer.
It seems to me that concatenation between String and int is correct?
Dart initializes objects in multiple phases. Initializing members directly ("field initializers") occurs early in object initialization, before this becomes valid, so that phase cannot initialize members that depend on other parts of the object.
Dart provides multiple ways to initialize members, so if one member needs to depend on another, you can initialize it in a later phase by using a different mechanism. For example, you could do one of:
Add the late keyword to make the dependent member lazily initialized.
Move initialization of the dependent member into the constructor body.
In the case of a Flutter State subtype, you could initialize the dependent member in its initState method, which in some cases is more appropriate.
Note that in some cases you additionally can consider replacing the member variable with a read-only getter instead. For example, in your case, perhaps you could use:
String get jsonText => jsonTextPref + jsonTextSuff.toString();
That would be appropriate if jsonText should always depend on jsonTextPref and jsonTextSuff, would never need to have an independent value, and if it's acceptable for jsonText to return a new object every time it's accessed.
Dart does not allow field initializers to refer to the object itself. Fields must always be fully initialized before any access is given to the object begin created.
The initializers can only access static and top-level variables, not any instance variables on the object itself.
With null safety, you will be allowed to write late String jsonText = this.something + this.other;. That field will then not be initialized until it's first read or written, which is necessarily after the object itself has been created.
You can only use constant expressions as initializers. x=this.y is not constant.
The error was displayed when I did following:
class MyClass {
String id;
String[] imagePaths;
}
It will mark the String in the line String id; as error, but the error is in the next line, it should be List<String> imagePaths; instead of String[] imagePaths; then the error in the line above also disappears. This can be very confusing if you have a big class and the actual error is many lines underneath the first marked line (talking from experience...)
Why does this code:
class _SequentialTextPageState {
String jsonTextPref = 'seqtext';
int jsonTextSuff = 10;
String jsonText = jsonTextPref + jsonTextSuff.toString();
}
generate these errors?
Error: The instance member 'jsonTextPref' can't be accessed in an initializer.
Error: The instance member 'jsonTextSuff' can't be accessed in an initializer.
It seems to me that concatenation between String and int is correct?
Dart initializes objects in multiple phases. Initializing members directly ("field initializers") occurs early in object initialization, before this becomes valid, so that phase cannot initialize members that depend on other parts of the object.
Dart provides multiple ways to initialize members, so if one member needs to depend on another, you can initialize it in a later phase by using a different mechanism. For example, you could do one of:
Add the late keyword to make the dependent member lazily initialized.
Move initialization of the dependent member into the constructor body.
In the case of a Flutter State subtype, you could initialize the dependent member in its initState method, which in some cases is more appropriate.
Note that in some cases you additionally can consider replacing the member variable with a read-only getter instead. For example, in your case, perhaps you could use:
String get jsonText => jsonTextPref + jsonTextSuff.toString();
That would be appropriate if jsonText should always depend on jsonTextPref and jsonTextSuff, would never need to have an independent value, and if it's acceptable for jsonText to return a new object every time it's accessed.
Dart does not allow field initializers to refer to the object itself. Fields must always be fully initialized before any access is given to the object begin created.
The initializers can only access static and top-level variables, not any instance variables on the object itself.
With null safety, you will be allowed to write late String jsonText = this.something + this.other;. That field will then not be initialized until it's first read or written, which is necessarily after the object itself has been created.
You can only use constant expressions as initializers. x=this.y is not constant.
The error was displayed when I did following:
class MyClass {
String id;
String[] imagePaths;
}
It will mark the String in the line String id; as error, but the error is in the next line, it should be List<String> imagePaths; instead of String[] imagePaths; then the error in the line above also disappears. This can be very confusing if you have a big class and the actual error is many lines underneath the first marked line (talking from experience...)