Swift generics for graph classes - swift

I'm trying to create some classes in Swift 5 to represent a directed Graph. I'm finding Swift generics to be very confusing and restrictive.
This is what I've got so far, but no matter what I try, Swift seems to come up with some obscure error or other (two are shown below in comments).
Can I even achieve this kind of structure in Swift without hardcoding Node to a specific concrete type?
I want to allow the Node type to be changed, so that I can add additional properties to the Node and Edge types according to the needs of the problem.
public class Graph<N:Node>
{
var nodeMap: [String: N] = [:]
var edges: [Edge<N>] = []
public func addEdge(_ parentName: String, _ childName: String, weight: Double = 0.0) throws {
let parent:N? = nodeMap[parentName]
let child:N? = nodeMap[childName]
let newEdge = Edge(parent!, child!)
parent!.outgoing.append(newEdge) // Cannot convert value of type 'Edge<N>' to expected argument type 'Edge<Node>'
edges.append(newEdge)
}
}
public class Edge<N:Node> {
var parent: N
var child: N
init(_ parent: N, _ child: N) {
self.parent = parent
self.child = child
}
}
public class Node {
var name:String = ""
var outgoing:[Edge<Self.Type>] = [] //'Edge' requires that 'Self.Type' inherit from 'Node'
}

I guess I'm a bit late to the party but for any future readers, the Final "issue" can be solved by making the Edge a protocol as well:
protocol Edge: class {
associatedtype NodeType: Node where NodeType.EdgeType == Self
var parent: NodeType {get set}
var child: NodeType? {get set}
}
To make sure any classes implementing these protocols actually point to the correct counterpart I've added a type constraint on the associatedtype.
protocol Node: class {
associatedtype EdgeType: Edge where EdgeType.NodeType == Self
var name:String {get set}
var outgoing:[EdgeType] {get set}
}
Just be careful of strong reference cycles as pointed out earlier. Hence the optional type of Edge.child to allow it to be weak. The reference arrangement can off course be different.
The main caveat of this method is that any subclasses to classes implementing these protocols will have properties pointing to their superclass. A proposed solution would be to not subclass but implement the protocols directly on the new class instead.

I think you need to make Node a protocol:
public protocol Node : class {
var name:String { get set }
var outgoing:[Edge<Self>] { get set }
}
Then, you can create concrete Node conformers that you can use as the generic argument for graph. e.g.
final public class ConcreteNode: Node {
public var name = ""
public var outgoing: [Edge<ConcreteNode>] = []
}
And you can create a Graph<ConcreteNode>. If you want to have a node with a foo property, you can create that class too:
final public class NodeWithFoo: Node {
public var name = ""
public var outgoing: [Edge<NodeWithFoo>] = []
public var foo = ""
}
And you can have another Graph<NodeWithFoo>.

Thanks for the responses.
The real end goal of this was to have Node and Edge types that could be specialized with additional fields to suit the application.
Sweeper's answer was a good answer to the specific implementation I posted in the question, and I learned a lot from it, so thanks for that.
However, what I ended up going with didn't use generics at all. This is what I did instead:
public class Node {
var name:String = ""
var outgoing:[Edge] = []
// Added this catchall property here
var data: Any?
}
I did a similar thing in the Edge class.
Now when I want to add some data to a Node, like say the price of an item as a Double field for example, I can simply create an extension like this:
extension Node {
var price:Double? {
get {
return self.data as? Double
}
set {
self.data = newValue
}
}
}
If I need to add more fields, I can always wrap them in a struct or class and set that via the extension.

Related

Generating auto-incrementing Instance IDs in Swift using Protocols and protocol-extensions only

Goal
To create an "AutoIDable" protocol with the following behaviour.
Every instance of a class conforming to this protocol will get an auto-generated "id" property of String type.
The code should generate id strings in the format <prefix><Instance-count-starting-from-1> (Eg: E-1, E-2, ...E-<n> and so on for 1st , 2nd ... nth Instance of the conforming class.
The protocol & protocol extensions should do ALL of the required work to generate the id strings. The conforming class will only have to subscribe to the protocol and nothing more.
Current status:
I have achieved Goal-1 & Goal-2 with the following implementation:
protocol Identifiable {
var id: String { get }
}
protocol AutoIDable: Identifiable{
static var _instanceCount: Int { get set }
}
class AutoID: AutoIDable {
init(idPrefix: String) {
setAutoID(prefix: idPrefix)
}
internal static var _instanceCount: Int = 0
var id: String = ""
func setAutoID(prefix: String = ""){
Self._instanceCount += 1
self.id = "\(prefix)\(Self._instanceCount)"
}
}
class Employee: AutoID {
init(){
super.init(idPrefix: "E-")
}
}
let e1 = Employee()
let e2 = Employee()
let e3 = Employee()
print(e1.id)
print(e2.id)
print(e3.id)
print(e1.id)
The output from running the above code:
E-1
E-2
E-3
E-1
Todo:
To achieve Goal-3, I need to eliminate the AutoID superclass and implement the same functionality using protocol extensions.
I ran into trouble because:
Protocol extensions do not allow static stored properties. I do know how to work around this limitation without using a superclass.
I do not know how to inject code into all the initialisers the creator of the Employee class might create. Again, I could not think of a workaround without using a superclass.
I would be grateful if you can point me in the right direction.
PS: New to Swift programming. If you’ve suggestions for implementing the code in a more “swifty” way, please do let me know. :-)
Since you want to use protocols, you can't have a stored property in the protocol. So, you'll need some place to store the incrementing ID value, if not the IDs themselves.
Not sure if it violates your requirements of using only protocols, because it would require a type for storage, but at least it won't require conforming classes to have a superclass.
So, let's say we build such a class that holds all the IDs and keeps the incrementing counter:
class AutoIncrementId {
static private var inc: Int = 0
static private var ids: [ObjectIdentifier: String] = [:]
static func getId(_ objectId: ObjectIdentifier, prefix: String) -> String {
if let id = ids[objectId] { return id }
else {
inc += 1
let id = "\(prefix)\(inc)"
ids[objectId] = id
return id
}
}
}
Then the protocol requirement could be:
protocol AutoIdentifiable {
static var prefix: String { get }
var id: String { get }
}
So, a class would need to define its prefix. But we could define a default implementation for id:
extension AutoIdentifiable where Self: AnyObject {
var id: String {
AutoIncrementId.getId(ObjectIdentifier(self), prefix: Self.prefix)
}
}
The usage would be:
class Employee: AutoIdentifiable {
static let prefix = "E-"
}
let e1 = Employee()
let e2 = Employee()
let e3 = Employee()
print(e1.id) // E-1
print(e2.id) // E-2
print(e3.id) // E-3
print(e1.id) // E-1

Swift, Protocols and Generics in Genetic Algorithm

I am trying to switch from Java to Swift and improve my programming skills in this language.
However, I have some difficulties understanding how generics works in Swift after a study of:
https://docs.swift.org/swift-book/LanguageGuide/Generics.html
I have started to write a genetic algorithm by writing some protocols.
protocol Point : Equatable {
var identifier: String { get }
var x: Double { get }
var y: Double { get }
func distance<P : Point>(to point: P) -> Double
}
protocol Individual {
associatedtype P : Point
var fitness: Double { get }
var chromosomes: [P] { get }
}
and now I want to make a struct which conforms to the Individual protocol.
The only try that compiles is
struct Route : Individual {
typealias P = City;
var fitness: Double { 0.0 }
var chromosomes: [City]
}
However, I want to make Route as much as generic, therefore I don't want to tell that it uses City as implementation of Point. I want that Route knows that it works on array of objects which conforms to Point protocol.
I'd appreciate your help.
Thank you in advance.
First of all, I'd suggest adding a Self requirement on the distance(to:) method. Self just tells the compiler that the paremeter is the same type as the conforming type.
protocol Point : Equatable {
var identifier: String { get }
var x: Double { get }
var y: Double { get }
func distance(to point: Self) -> Double
}
So, in your City struct point must also be of type City.
struct City: Point {
var identifier: String
var x: Double
var y: Double
func distance(to point: City) -> Double {
return .zero
}
}
You can make your Route struct more flexible by adding a generic parameter that also satisfies the associated type requirement imposed by the Individual protocol.
struct Route<P: Point>: Individual {
var fitness: Double { 0.0 }
var chromosomes: [P]
}
To instantiate a Route:
var cityRoute = Route<City>(chromosomes: [])
You can create an array of class that implements a specific protocol, so for example in this case you will have:
struct Route: Individual {
typealias P = City;
var fitness: Double { 0.0 }
var chromosomes: [Point]
}
and you can call all the protocol methods.

Create instance from class using other class instance

So i came across this case, an already published application needed to change all of it's API's & Models.
Now i have created a generic tier to handle the requests and apis and almost mid way into implementing all the services, now i came across this problem, the previous defined models are used widely around the application of course and since its MVC , Massive View Controller. it is going to cost me too much changing everything in each scene to the new model type,
therefore i thought of making an adapter to cast the new models when i get them in my
callback closure to the old ones type.
I have already figured out a way but the problem its pretty much long, long way i am looking for a better approach if existed and a better solution over all for the case if there was a better one.
protocol Parsable {
var time: String { get }
var span: String { get }
init(_ copy: Parsable)
}
class Foo: Parsable {
required init(_ copy: Parsable) {
self.span = copy.span
self.time = copy.time
}
init(time: String, span: String) {
self.time = time
self.span = span
}
var time = ""
var span = ""
}
class Fee: Parsable {
required init(_ copy: Parsable) {
self.span = copy.span
self.time = copy.time
}
init(time: String, span: String, date: String) {
self.time = time
self.span = span
self.date = date // an extra var that is not used in Foo
}
var time = ""
var span = ""
var date = ""
}
var foo = Foo(time: "", span: "")
var fee = Fee(time: "2", span: "ye", date: "123")
// Usage
var deeped = Foo(fee)
As you can tell from the code i've created a protocol that contains the variables and an init() that holds its type, now imagine this to implement a model with +50 variable and +40 model in total, might need an age or two.
I hope i understood the problem, It's not a clean solution but it's quick an flexible:
What about an additional method in the protocol with an implementation in it's extension to perform the all the copies? This is possible since i see that all the properties have an assigned dummy value. Then the only thing to do for each object implementing Parsable is to call such method in the initializer. kind of a commonInit() method.
protocol Parsable {
var time: String { get }
var span: String { get }
init(_ copy: Parsable)
func initParsableProperties(from copy: Parsable)
}
extension Parsable {
func initParsableProperties(from copy: Parsable) {
self.span = copy.span
self.time = copy.time
}
}
class Foo: Parsable {
...
required init(_ copy: Parsable) {
initParsableProperties(from: copy)
}
...
}
This also allows you to add additional properties in the initializers if needded. If you don't need additional properties it could then be directly implemented in the initializer, but it requires some more tricky solutions.
So i Achieved this using Codable, i have created a dummy protocol that is conforming to Codable, and using that in every class, struct that i needed to convert it, and created a generic function extended from that protocol, to encode the object to data then decode it into the new type desired,
With that i don't have to declare any variable or property i needed to copy manually.
check out the code below.
protocol Convertable: Codable {}
class Foo: Convertable {
var foo: String
var fee: String
init(foo: String, fee: String) {
self.foo = foo
self.fee = fee
}
}
class Fee: Convertable{
var fee: String
init( fee: String) {
self.fee = fee
}
}
//Generic function to convert
extension Convertable {
func convert<T: Codable>(_ primary: T.Type) -> T? {
return try? JSONDecoder().decode(primary, from: try! JSONEncoder().encode(self))
}
}
var foo = Foo(foo: "nothing", fee: "nothing")
let fee = foo.convert(Fee.self)
fee?.fee // nothing

What is a good alternative for static stored properties of generic types in swift?

Since static stored properties are not (yet) supported for generic types in swift, I wonder what is a good alternative.
My specific use-case is that I want to build an ORM in swift. I have an Entity protocol which has an associatedtype for the primary key, since some entities will have an integer as their id and some will have a string etc. So that makes the Entity protocol generic.
Now I also have an EntityCollection<T: Entity> type, which manages collections of entities and as you can see it is also generic. The goal of EntityCollection is that it lets you use collections of entities as if they were normal arrays without having to be aware that there's a database behind it. EntityCollection will take care of querying and caching and being as optimized as possible.
I wanted to use static properties on the EntityCollection to store all the entities that have already been fetched from the database. So that if two separate instances of EntityCollection want to fetch the same entity from the database, the database will be queried only once.
Do you guys have any idea how else I could achieve that?
The reason that Swift doesn't currently support static stored properties on generic types is that separate property storage would be required for each specialisation of the generic placeholder(s) – there's more discussion of this in this Q&A.
We can however implement this ourselves with a global dictionary (remember that static properties are nothing more than global properties namespaced to a given type). There are a few obstacles to overcome in doing this though.
The first obstacle is that we need a key type. Ideally this would be the metatype value for the generic placeholder(s) of the type; however metatypes can't currently conform to protocols, and so therefore aren't Hashable. To fix this, we can build a wrapper:
/// Hashable wrapper for any metatype value.
struct AnyHashableMetatype : Hashable {
static func ==(lhs: AnyHashableMetatype, rhs: AnyHashableMetatype) -> Bool {
return lhs.base == rhs.base
}
let base: Any.Type
init(_ base: Any.Type) {
self.base = base
}
func hash(into hasher: inout Hasher) {
hasher.combine(ObjectIdentifier(base))
}
// Pre Swift 4.2:
// var hashValue: Int { return ObjectIdentifier(base).hashValue }
}
The second is that each value of the dictionary can be a different type; fortunately that can be easily solved by just erasing to Any and casting back when we need to.
So here's what that would look like:
protocol Entity {
associatedtype PrimaryKey
}
struct Foo : Entity {
typealias PrimaryKey = String
}
struct Bar : Entity {
typealias PrimaryKey = Int
}
// Make sure this is in a seperate file along with EntityCollection in order to
// maintain the invariant that the metatype used for the key describes the
// element type of the array value.
fileprivate var _loadedEntities = [AnyHashableMetatype: Any]()
struct EntityCollection<T : Entity> {
static var loadedEntities: [T] {
get {
return _loadedEntities[AnyHashableMetatype(T.self), default: []] as! [T]
}
set {
_loadedEntities[AnyHashableMetatype(T.self)] = newValue
}
}
// ...
}
EntityCollection<Foo>.loadedEntities += [Foo(), Foo()]
EntityCollection<Bar>.loadedEntities.append(Bar())
print(EntityCollection<Foo>.loadedEntities) // [Foo(), Foo()]
print(EntityCollection<Bar>.loadedEntities) // [Bar()]
We are able to maintain the invariant that the metatype used for the key describes the element type of the array value through the implementation of loadedEntities, as we only store a [T] value for a T.self key.
There is a potential performance issue here however from using a getter and setter; the array values will suffer from copying on mutation (mutating calls the getter to get a temporary array, that array is mutated and then the setter is called).
(hopefully we get generalised addressors soon...)
Depending on whether this is a performance concern, you could implement a static method to perform in-place mutation of the array values:
func with<T, R>(
_ value: inout T, _ mutations: (inout T) throws -> R
) rethrows -> R {
return try mutations(&value)
}
extension EntityCollection {
static func withLoadedEntities<R>(
_ body: (inout [T]) throws -> R
) rethrows -> R {
return try with(&_loadedEntities) { dict -> R in
let key = AnyHashableMetatype(T.self)
var entities = (dict.removeValue(forKey: key) ?? []) as! [T]
defer {
dict.updateValue(entities, forKey: key)
}
return try body(&entities)
}
}
}
EntityCollection<Foo>.withLoadedEntities { entities in
entities += [Foo(), Foo()] // in-place mutation of the array
}
There's quite a bit going on here, let's unpack it a bit:
We first remove the array from the dictionary (if it exists).
We then apply the mutations to the array. As it's now uniquely referenced (no longer present in the dictionary), it can be mutated in-place.
We then put the mutated array back in the dictionary (using defer so we can neatly return from body and then put the array back).
We're using with(_:_:) here in order to ensure we have write access to _loadedEntities throughout the entirety of withLoadedEntities(_:) to ensure that Swift catches exclusive access violations like this:
EntityCollection<Foo>.withLoadedEntities { entities in
entities += [Foo(), Foo()]
EntityCollection<Foo>.withLoadedEntities { print($0) } // crash!
}
I'm not sure if I like this yet or not, but I used a static computed property:
private extension Array where Element: String {
static var allIdentifiers: [String] {
get {
return ["String 1", "String 2"]
}
}
}
Thoughts?
An hour ago i have a problem almost like yours. I also want to have a BaseService class and many other services inherited from this one with only one static instance. And the problem is all services use their own model (ex: UserService using UserModel..)
In short I tried following code. And it works!.
class BaseService<Model> where Model:BaseModel {
var models:[Model]?;
}
class UserService : BaseService<User> {
static let shared = UserService();
private init() {}
}
Hope it helps.
I think the trick was BaseService itself will not be used directly so NO NEED TO HAVE static stored property. (P.S. I wish swift supports abstract class, BaseService should be)
It turns out that, although properties are not allowed, methods and computed properties are. So you can do something like this:
class MyClass<T> {
static func myValue() -> String { return "MyValue" }
}
Or:
class MyClass<T> {
static var myValue: String { return "MyValue" }
}
This isn't ideal, but this is the solution I came up with to fit my needs.
I'm using a non-generic class to store the data. In my case, I'm using it to store singletons. I have the following class:
private class GenericStatic {
private static var singletons: [String:Any] = [:]
static func singleton<GenericInstance, SingletonType>(for generic: GenericInstance, _ newInstance: () -> SingletonType) -> SingletonType {
let key = "\(String(describing: GenericInstance.self)).\(String(describing: SingletonType.self))"
if singletons[key] == nil {
singletons[key] = newInstance()
}
return singletons[key] as! SingletonType
}
}
This is basically just a cache.
The function singleton takes the generic that is responsible for the singleton and a closure that returns a new instance of the singleton.
It generates a string key from the generic instance class name and checks the dictionary (singletons) to see if it already exists. If not, it calls the closure to create and store it, otherwise it returns it.
From a generic class, you can use a static property as described by Caleb. For example:
open class Something<G> {
open static var number: Int {
return GenericStatic.singleton(for: self) {
print("Creating singleton for \(String(describing: self))")
return 5
}
}
}
Testing the following, you can see that each singleton is only created once per generic type:
print(Something<Int>.number) // prints "Creating singleton for Something<Int>" followed by 5
print(Something<Int>.number) // prints 5
print(Something<String>.number) // prints "Creating singleton for Something<String>"
This solution may offer some insight into why this isn't handled automatically in Swift.
I chose to implement this by making the singleton static to each generic instance, but that may or may not be your intention or need.
Depending on how many types you need to support and whether inheritance is (not) an option for you, conditional conformance could also do the trick:
final class A<T> {}
final class B {}
final class C {}
extension A where T == B {
static var stored: [T] = []
}
extension A where T == C {
static var stored: [T] = []
}
let a1 = A<B>()
A<B>.stored = [B()]
A<B>.stored
let a2 = A<C>()
A<C>.stored = [C()]
A<C>.stored
Well I also ran into the same problem and was able to device a logical work around for it. I had to create a static instance of urlsession using a generic class as handler.
class ViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
let neworkHandler = NetworkHandler<String>()
neworkHandler.download()
neworkHandler.download()
}
class SessionConfigurator: NSObject{
static var configuration:URLSessionConfiguration{
let sessionConfig = URLSessionConfiguration.background(withIdentifier: "com.bundle.id")
sessionConfig.isDiscretionary = true
sessionConfig.allowsCellularAccess = true
return sessionConfig
}
static var urlSession:URLSession?
class NetworkHandler<T> :NSObject, URLSessionDelegate{
func download(){
if SessionConfigurator.urlSession == nil{
SessionConfigurator.urlSession = URLSession(configuration:SessionConfigurator.configuration, delegate:self, delegateQueue: OperationQueue.main)
}
}
All I can come up with is to separate out the notion of source (where the collection comes from) and then collection itself. And then the make the source responsible for caching. At that point the source can actually be an instance, so it can keep whatever caches it wants/needs to and your EntityCollection is just responsible for maintaining a CollectionType and/or SequenceType protocol around the source.
Something like:
protocol Entity {
associatedtype IdType : Comparable
var id : IdType { get }
}
protocol Source {
associatedtype EntityType : Entity
func first() -> [EntityType]?
func next(_: EntityType) -> [EntityType]?
}
class WebEntityGenerator <EntityType:Entity, SourceType:Source where EntityType == SourceType.EntityType> : GeneratorType { ... }
class WebEntityCollection : SequenceType { ... }
would work if you have a typical paged web data interface. Then you could do something along the lines of:
class WebQuerySource<EntityType:Entity> : Source {
var cache : [EntityType]
...
func query(query:String) -> WebEntityCollection {
...
}
}
let source = WebQuerySource<MyEntityType>(some base url)
for result in source.query(some query argument) {
}
source.query(some query argument)
.map { ... }
.filter { ... }
Something like this?
protocol Entity {
}
class EntityCollection {
static var cachedResults = [Entity]()
func findById(id: Int) -> Entity? {
// Search cache for entity with id from table
// Return result if exists else...
// Query database
// If entry exists in the database append it to the cache and return it else...
// Return nil
}
}

How to define initializers in a protocol extension?

protocol Car {
var wheels : Int { get set}
init(wheels: Int)
}
extension Car {
init(wheels: Int) {
self.wheels = wheels
}
}
on self.wheels = wheels i get the error
Error: variable 'self' passed by reference before being initialized
How can I define the initializer in the protocol extension?
As you can see this doesn't work under these circumstances because when compiling, one has to make sure that all properties are initialized before using the struct/enum/class.
You can make another initializer a requirement so the compiler knows that all properties are initialized:
protocol Car {
var wheels : Int { get set }
// make another initializer
// (which you probably don't want to provide a default implementation)
// a protocol requirement. Care about recursive initializer calls :)
init()
init(wheels: Int)
}
extension Car {
// now you can provide a default implementation
init(wheels: Int) {
self.init()
self.wheels = wheels
}
}
// example usage
// mark as final
final class HoverCar: Car {
var wheels = 0
init() {}
}
let drivableHoverCar = HoverCar(wheels: 4)
drivableHoverCar.wheels // 4
As of Xcode 7.3 beta 1 it works with structs as expected but not with classes since if they are not final the init(wheels: Int) in the protocol is a required init and it can be overridden therefore it cannot be added through an extension. Workaround (as the complier suggests): Make the class final.
Another workaround (in depth; without final class)
To work with classes without making them final you can also drop the init(wheels: Int) requirement in the protocol. It seems that it behaves no different than before but consider this code:
protocol Car {
var wheels : Int { get set }
init()
// there is no init(wheels: Int)
}
extension Car {
init(wheels: Int) {
self.init()
print("Extension")
self.wheels = wheels
}
}
class HoverCar: Car {
var wheels = 0
required init() {}
init(wheels: Int) {
print("HoverCar")
self.wheels = wheels
}
}
// prints "HoverCar"
let drivableHoverCar = HoverCar(wheels: 4)
func makeNewCarFromCar<T: Car>(car: T) -> T {
return T(wheels: car.wheels)
}
// prints "Extension"
makeNewCarFromCar(drivableHoverCar)
So if you make a Car from a generic context where the type on which you call init is only to be known as Car the extension initializer is called even though an initializer is defined in HoverCar. This only occurs because there is no init(wheels: Int) requirement in the protocol.
If you add it you have the former problem with declaring the class as final but now it prints two times "HoverCar". Either way the second problem probably never occurs so it might be a better solution.
Sidenote: If I have made some mistakes (code, language, grammar,...) you're welcome to correct me :)
My understanding is that this isn't possible, because the protocol extension can't know which properties the conforming class or struct has - and therefore cannot guarantee they are correctly initialized.
If there are ways to get around this, I'm very interested to know! :)
#Qbyte is correct.
In addition, you can take a look at my Configurable
In that I have Initable protocol
public protocol Initable {
// To make init in protocol extension work
init()
}
public extension Initable {
public init(#noescape block: Self -> Void) {
self.init()
block(self)
}
}
Then in order to conform to it
extension Robot: Initable { }
I have 2 ways, using final or implement init
final class Robot {
var name: String?
var cute = false
}
class Robot {
var name: String?
var cute = false
required init() {
}
}
May not be the same but in my case instead of using init I used a static func to return the object of the class.
protocol Serializable {
static func object(fromJSON json:JSON) -> AnyObject?
}
class User {
let name:String
init(name:String) {
self.name = name
}
}
extension User:Serializable {
static func object(fromJSON json:JSON) -> AnyObject? {
guard let name = json["name"] else {
return nil
}
return User(name:name)
}
}
Then to create the object I do something like:
let user = User.object(fromJSON:json) as? User
I know its not the best thing ever but its the best solution I could find to not couple business model with the data layer.
NOTE: I'm lazy and I coded everything directly in the comment so if something doesn't work let me know.